Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation (original) (raw)
Related papers
Proceedings of The National Academy of Sciences, 1992
We report that visual stimulation produces an easily detectable (5-20%) transient increase in the intensity of water proton magnetic resonance signals in human primary visual cortex in gradient echo images at 4-T magnetic-field strength. The observed changes predominantly occur in areas containing gray matter and can be used to produce highspatial-resolution functional brain maps in humans. Reducing the image-acquisition echo time from 40 msec to 8 msec reduces the amplitude of the fractional signal change, suggesting that it is produced by a change in apparent transverse relaxation time T2. The amplitude, sign, and echo-time dependence of these intrinsic signal changes are consistent with the idea that neural activation increases regional cerebral blood flow and concomitantly increases venous-blood oxygenation.
Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping using MRI
Proceedings of The National Academy of Sciences, 1992
We report that visual stimulation produces an easily detectable (5-20%) transient increase in the intensity of water proton magnetic resonance signals in human primary visual cortex in gradient echo images at 4-T magnetic-field strength. The observed changes predominantly occur in areas containing gray matter and can be used to produce highspatial-resolution functional brain maps in humans. Reducing the image-acquisition echo time from 40 msec to 8 msec reduces the amplitude of the fractional signal change, suggesting that it is produced by a change in apparent transverse relaxation time T2. The amplitude, sign, and echo-time dependence of these intrinsic signal changes are consistent with the idea that neural activation increases regional cerebral blood flow and concomitantly increases venous-blood oxygenation.
Magnetic Resonance Imaging, 2000
The blood oxygen level dependency (BOLD) contrast is a useful tool for functional neuroimaging based on the hemodynamic response to neuronal activation. We observed different hemodynamic responses in the BOLD signal between the primary sensorimotor area (SM1) and the supplementary motor area (SMA) in the sequential finger movement task. In the SMA, a stronger initial overshoot and a post-stimulus overshoot were observed. It was hypothesized from the time course analysis that the stronger initial overshoot reflected the activation of the SMA for motor control programming in the initial phase. Although the post-stimulus overshoot may be partially explained by cerebral blood flow (CBF) cerebral blood volume (CBV) uncoupling, its mechanism remained unknown. In the SM1, only the initial overshoot was observed and the level of BOLD signal was almost constant after the initial overshoot during the task period. These observations suggested that the BOLD signal is characterized by both CBF-CBV uncoupling and the neuronal activation characteristics in each region.
NMR in Biomedicine, 1999
In this study, phase-contrast MR techniques are applied in order to measure the blood flow changes induced by a motor task in a large superficial vein draining the motor cortex. The measurements were applied to six healthy volunteers, in motor rest conditions and during performance of a motor task. The latter consisted of sequential finger-to-thumb opposition. The task was actually executed and mentally simulated. Significant blood flow increases were found when changing from from mental simulation to actual execution of the motor task (increases ranging between 1.6 and 10.3 ml/min, i.e. 9% and 45%, respectively) and from resting conditions to actual execution of the motor task (increases ranging between 1.7 and 14.0 ml/min, i.e. 32% and 72%, respectively).
Magnetic Resonance in Medicine, 1996
Changes in cerebral blood oxygenation and flow during prolonged activation of human visual cortex (6-min video projection) were monitored using high-resolution T2*and T,-weighted gradient-echo MRI in identical sessions. Oxygenation-sensitive recordings displayed an initial signal increase (oxygenation "overshoot"), a subsequent signal decrease extending over 4-5 min (relative deoxygenation), and a signal drop after the end of stimulation that mirrored the initial response (oxygenation "undershoot"). Flow-sensitive MRI demonstrated that the inflow effect remained elevated during the entire period of Stimulation. The observation of gradually decreasing cerebral blood oxygenation, despite persisting elevation of blood flow, may be understood to be an accumulation of deoxyhemoglobin due to the progressive up-regulation of oxidative phosphorylation. The present findings support a concept in which transitions between functional states lead to an uncoupling of perfusion (oxygen delivery) from oxidative metabolism (oxygen consumption) whereas steady-state activity achieves their recoupling.
NeuroImage, 2005
Increased neural activity in brain tissue is accompanied by an array of supporting physiological processes, including increases in blood flow and the rates at which glucose and oxygen are consumed. These responses lead to secondary effects such as alterations in blood oxygenation and blood volume, and are ultimately the primary determinants of the amplitude and temporal signature of the blood oxygenation level-dependent (BOLD) signal used prevalently to map brain function. We have performed experiments using a combination of optical and MRI-based imaging methods to develop a more comprehensive picture of the physiological events accompanying activation of primary motor cortex during a finger apposition task. Temporal profiles for changes in tissue hemoglobin concentrations were qualitatively similar to those observed for MRI-based flow and oxygenation signals. Quantitative analysis of these signals revealed peak changes of +16 F 2% for HbO, À13 F 2% for HbR, +8 F 3% for total Hb, +83 F 9% for cerebral blood flow, and +1.4 F 0.1% for the BOLD MRI signal. A mass balance model was used to estimate the change in rate of oxidative metabolism implied by the optical and flow measurements, leading to a computed value of +47 F 5%. It should be noted that the optical and MRI observations may in general reflect changes over different volumes of tissue. The ratio of fractional changes in oxidative metabolism to fractional change in blood flow was found to be 0.56 F 0.08, in general agreement with previous studies of flow-metabolism coupling.
Magnetic Resonance in Medicine, 2013
Purpose-The relationship between cerebral blood volume (CBV) and cerebral blood flow (CBF) underlies blood oxygenation level dependent functional MRI signal. This study investigates the potential for improved characterization of the CBV-CBF relationship in humans, and examines gender effects as well as spatial variations in the CBV-CBF relationship. Methods-Healthy subjects were imaged non-invasively at rest and during visual stimulation, constituting the first MRI measurement of the absolute CBV-CBF relationship in humans with complete coverage of the functional areas of interest. Results-CBV and CBF estimates were consistent with literature, and their relationship varied both spatially and with gender. In a region of interest (ROI) with stimulus induced activation in CBV and CBF at the P<0.05 significance level, a power function fit resulted in CBV = 2.1 CBF 0.32 across all subjects, CBV = 0.8 CBF 0.51 in females and CBV = 4.4 CBF 0.15 in males. Exponents decreased in both genders as ROIs were expanded to include less significantly activated regions. Conclusion-Consideration for potential gender related differences, as well as regional variations under a range of physiological states, may reconcile some of the variation across literature and advance our understanding of the underlying cerebrovascular physiology.
Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging
1993
It recently has been demonstrated that magnetic resonance imaging can be used to map changes in brain hemodynamics produced by human mental operations. One method under development relies on blood oxygenation level-dependent (BOLD) contrast: a change in the signal strength of brain water protons produced by the paramagnetic effects of venous blood deoxyhemoglobin. Here we discuss the basic quantitative features of the observed BOLD-based signal changes, including the signal amplitude and its magnetic field dependence and dynamic effects such as a pronounced oscillatory pattern that is induced in the signal from primary visual cortex during photic stimulation experiments. The observed features are compared with the results of Monte Carlo simulations of water proton intravoxel phase dispersion produced by local field gradients generated by paramagnetic deoxyhemoglobin in nearby venous blood vessels. The simulations suggest that the effect of water molecule diffusion is strong for the case of blood capillaries, but, for larger venous blood vessels, water diffusion is not an important determinant of deoxyhemoglobin-induced signal dephasing. We provide an expression for the apparent in-plane relaxation rate constant (R*) in terms of the main magnetic field strength, the degree of the oxygenation of the venous blood, the venous blood volume fraction in the tissue, and the size of the blood vessel.
Magnetic Resonance Imaging, 2007
Functional magnetic resonance imaging (MRI) in the nonhuman primate promises to provide a much desired link between brain research in humans and the large body of systems neuroscience work in animals. We present here a novel high field, large-bore, vertical MR system (7 T/60 cm, 300 MHz), which was optimized for neuroscientific research in macaque monkeys. A strong magnetic field was applied to increase sensitivity and spatial resolution for both MRI and spectroscopy. Anatomical imaging with voxel sizes as small as 75Â150Â300 Am 3 and with high contrast-to-noise ratios permitted the visualization of the characteristic lamination of some neocortical areas, e.g., Baillarger lines. Relaxation times were determined for different structures: at 7 T, T1 was 2.01/1.84/1.54 s in GM/GM-V1/ WM, T2 was 59.1/54.4 ms in GM/WM and T2* was 29 ms. At 4.7 T, T1 was 25% shorter, T2 and T2* 18% longer compared to 7T. Spatiotemporally resolved blood-oxygen-level-dependent (BOLD) signal changes yielded robust activations and deactivations (negative BOLD), with average amplitudes of 4.1% and À2.4%, respectively. Finally, the first high-resolution (500 Am in-plane) images of cerebral blood flow in the anesthetized monkey are presented. On functional activation we observed flow increases of up to 38% (59 to 81 ml/100 g/min) in the primary visual cortex, V1. Compared to BOLD maps, functional CBF maps were found to be localized entirely within the gray matter, providing unequivocal evidence for high spatial specificity. The exquisite sensitivity of the system and the increased specificity of the hemodynamic signals promise further insights into the relationship of the latter to the underlying physiological activity.