Safeguarding Quantum Key Distribution Through Detection Randomization (original) (raw)
Abstract
We propose and experimentally demonstrate a scheme to render the detection apparatus of a Quantum Key Distribution system immune to the main classes of hacking attacks in which the eavesdropper explores the back-door opened by the single-photon detectors. The countermeasure is based on the creation of modes that are not deterministically accessible to the eavesdropper. We experimentally show that the use of beamsplitters and extra single-photon detectors at the receiver station passively creates randomized spatial modes that erase any knowledge the eavesdropper might have gained when using bright-light faked states. Additionally, we experimentally show a detector-scrambling approach where the random selection of the detector used for each measurement -equivalent to an active spatial mode randomization -hashes out the side-channel open by the detection efficiency mismatch-based attacks. The proposed combined countermeasure represents a practical and readily implementable solution against the main classes of quantum hacking attacks aimed on the single-photon detector so far, without intervening on the inner working of the devices.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (47)
- N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography", Rev. Mod. Phys., vol. 74, pp. 145-195, 2002.
- H.-K. Lo and H. F. Chau, "Unconditional security of quantum key distribution over arbitrarily long distances," Science, vol. 283, pp. 2050-2056, 1999.
- N. Lütkenhaus, "Security against individual attacks for realistic quantum key distribution," Phys. Rev. A, vol. 61, pp. 052304, 2000.
- D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum Inf. Comput., vol. 4, pp. 325-360, 2004.
- V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, "The security of practical quantum key distribution," Rev. Mod. Phys, vol. 81, pp. 1301-1350, 2009.
- W.-Y. Hwang, "Quantum key distribution with high loss: toward global secure communication," Phys. Rev. Lett., vol. 91, pp. 057901, 2003.
- X.-B. Wang, "Beating the photon-number-splitting attack in practical quantum cryptography," Phys. Rev. Lett., vol. 94, pp. 230503, 2005.
- H.-K. Lo, X. Ma, and K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett., vol. 94, pp. 230504, 2005.
- X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, "Practical decoy state for quantum key distribution," Phys. Rev. A, vol. 72, pp. 012326, 2005.
- V. Makarov and D. R. Hjelme, "Faked states attack on quantum cryptosystems," J. Mod. Opt., vol. 52, pp. 691-705, 2005.
- V. Makarov, A. Anisimov, and A. Skaar, "Effects of detector efficiency mismatch on security of quantum cryptosystems," Phys. Rev. A, vol. 74, pp. 022313, 2006.
- B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, "Time-shift attack in practical quantum cryptosystems," Quantum Inf. Comp., vol. 7, pp. 073-082, 2007.
- Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen and H.-K. Lo, "Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems," Phys. Rev. A, vol. 78, pp. 042333, 2008.
- V. Makarov, "Controlling passively quenched single photon detectors by bright light ," New J. Phys., vol. 11, pp. 065003, 2009.
- L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, "Thermal blinding of gated detectors in quantum cryptography," Opt. Express, vol. 18, pp. 27938-27954, 2010.
- S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, "Controlling an actively-quenched single photon detector with bright light," Opt. Express, vol. 19, pp. 23590-23600, 2011.
- C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, "After-gate attack on a quantum cryptosystem," New J. Phys., vol. 13, pp. 013043, 2011.
- L. Lydersen, N. Jain, C. Wittmann, O. Maroy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, "Superlinear threshold detectors in quantum cryptography," Phys. Rev. A, vol. 84, pp. 032320, 2011.
- H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, "Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors," New J. Phys., vol. 13, pp. pp. 073024, 2011.
- L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, "Hacking commercial quantum cryptography systems by tailored bright illumination," Nat. Photonics, vol. 4, pp. 686-689, 2010.
- I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, "Full-field implementation of a perfect eavesdropper on a quantum cryptography system," Nat. Commun., vol. 2, pp. 349, 2011.
- I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and J. Kurtsiefer, "Experimentally faking the violation of Bell's inequalities," Phys. Rev. Lett., vol. 107, pp. 170404, 2011.
- Q. Liu, A. Lamas-Linares, C. Kurtsiefer, J. Skaar, V. Makarov, and I. Gerhardt, "A universal setup for active control of a single-photon detector," Rev. Sci. Inst., vol. 85, pp. 013108, 2014.
- Z. L. Yuan, J. F .Dynes, and A. J. Shields, "Avoiding the blinding attack in QKD," Nat. Photonics, vol. 4, pp. 800-801, 2010.
- Z. L. Yuan, J. F. Dynes, and A. J. Shields, "Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography," Appl. Phys. Lett., vol. 98, pp. 231104, 2011.
- L. Lydersen, V. Makarov, and J. Skaar, "Comment on "Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography" [App. Phys. Lett., vol. 98, pp. 231104, 2011]," Appl. Phys. Lett., vol. 99, pp. 196101, 2011.
- Z. L. Yuan, J. F. Dynes, and A. J. Shields, "Response to "Comment on "Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography"" [Appl. Phys. Lett., vol. 99, pp. 196101, 2011]," App. Phys. Lett., vol. 99, pp. 196102, 2011.
- T. Ferreira da Silva, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, "Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems," Optics Express, vol. 20, pp. 18911-18924, 2012.
- H.-K. Lo, M. Curty, and B. Qi, "Measurement-device-independent quantum key distribution", Phys. Rev. Lett., vol. 108, pp. 130503, 2012.
- S. L. Braustein and S. Pirandola, "Side-channel-free quantum key distribution", Phys. Rev. Lett., vol. 108, pp. 130502, 2012.
- T. Ferreira da Silva, D. Vitoreti, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, "Long-Distance Bell-State Analysis of Fully Independent Polarization Weak Coherent States," J. Lightwave Technol., vol. 31, pp. 2881-2887, 2013.
- A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, "Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks," Phys. Rev. Lett., vol. 111, pp. 130501, 2013.
- Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, "Experimental measurement- device-independent quantum key distribution," Phys. Rev. Lett., vol. 111, pp. 130502, 2013.
- T. Ferreira da Silva, D. Vitoreti, G. B. Xavier, G. C. do Amaral, G. P. Temporão, and J. P. von der Weid, "Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits," Phys. Rev. A, vol. 88, pp. 052303, 2013.
- Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H. -K. Lo, "Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution," Phys. Rev. Lett., vol. 112, pp. 190503, 2014.
- R. H. Hadfield, "Single-photon detectors for optical quantum information applications," Nat. Photonics, vol. 3, pp. 696-705, 2009.
- M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, "Invited review article: single-photon sources and detectors," Rev. Sci. Instrum., vol. 82, pp. 071101, 2011.
- S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, "Avalanche photodiodes and quenching circuits for single-photon detection," Appl. Opt., vol. 35, no. 12, pp. 1956-1976, 1996.
- Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, "High speed single photon detection in the near infrared," Appl. Phys. Lett., vol. 91, pp. 041114, 2007.
- N. Namekata, S. Adachi, and S. Inoue, "Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single- photon detection at telecommunication wavelengths," IEEE Photon. Tech. Lett., vol. 22, no. 8, pp. 529-531, 2010.
- B. E. Kardynal, Z. L. Yuan, and A. J. Shield, "An avalanche- photodiode-based photon-number-resolving detector," Nature Photon., vol. 2, pp. 425-428, 2008.
- H.-W. Li et al, "Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources," Phys. Rev. A, vol. 84, pp. 062308, 2011.
- N. Jain, B. Stiller, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, "Risk analysis of Trojan-horse attacks on practical quantum key distribution systems," arXiv: 1408.0492
- T. Ferreira da Silva, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, "Impact of raman scattered noise from multiple telecom channels on fiber-optic quantum key distribution systems", J. Lightwave Technol., vol. 32, no. 13, pp. 2332-2339, 2014.
- V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, "The security of practical quantum key distribution," Rev. Mod. Phys., vol. 81, pp. 1301, 2009.
- S. Wang et al, "Field test of wavelength-saving quantum key distribution network," Optics Lett., vol. 35, no. 14, pp. 2454-2456, 2010.
- N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, "Trojan- horse attacks on quantum-key-distribution systems," Phys. Rev. A, vol. 73, pp. 022320, 2006.