Exploiting the Vitamin B 12 Pathway To Enhance Oral Drug Delivery via Polymeric Micelles (original) (raw)

Biomacromolecules, 2005

Abstract

Vitamin B12 (VB12)-modified dextran-g-polyethyleneoxide cetyl ether (DEX-g-PEO-C16) was synthesized by linking VB12 residues to a DEX-g-PEO-C16 copolymer via a 2,2'-(ethylenedioxy)bis(ethylamine) spacer. The level of VB12 substitution on the DEX-g-PEO-C16 copolymer reached 1.68% (w/w). In aqueous solution, DEX-based copolymers form micelles that can entrap within their hydrophobic core up to 8.5% w/w of cyclosporin A (CsA), a poorly water soluble immunosuppressant. The permeability of Caco-2 cell membranes to CsA incorporated in VB12 modified and unmodified polymeric micelles was monitored in the presence and absence of intrinsic factor (IF). The apical (AP) to basolateral (BL) permeation of CsA through Caco-2 cell monolayers after 24 h of transport was significantly higher (1.8 and 2.3 times in absence and presence of IF, respectively) in the case of CsA loaded in VB12-modified polymeric micelles, compared to CsA in unmodified micelles. The results point to possible improvement in the application of polysaccharide-based polymeric micelles as targeted polymeric drug carriers for the oral delivery of poorly water soluble drugs.

Françoise Winnik hasn't uploaded this paper.

Let Françoise know you want this paper to be uploaded.

Ask for this paper to be uploaded.