Strictly singular and strictly cosingular linear relations and their conjugates (original) (raw)

Abstract

In this paper various conditions are given under which the strict singularity (respectively, strict cosingularity) of a linear relation implies the strict singularity (respectively, strict cosingularity) of its conjugate. Serial-fee code: 0004-9727/05 SA2.00+0.00. 2 T. Alvarez [2] for all nonzero scalars a, ft € K and X\,x 2 € D(T). The class of such relations T is denoted by LR(X, Y). If T maps the points of its domain to singletons, then T is said to be a single valued or simple operator. The graph G{T) of T e LR(X, Y) is G(T) := {(*,!/) € * x r : a; €£>(r), j / e T i } , Let X denote the completion of the normed space X. The completion T of T £ LR(X, Y) is the linear relation in LR(X, Y) whose graph is G(T). Let M be a subspace of D(T). Then the restriction T \ M is defined by G(T \ M ) := {(m,y) :meM, ye Tm). For any subspace M of X such that M n D(T) ^ 0, we write T | M = T \ M nD(T)-The inverse of T is the linear relation X 1 " 1 defined by G t T -1 ) : = {(y,x) eYxX:(x,y)e G(T)}.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (18)

  1. J.P. Aubin and A. Cellina, Differential inclusions. Set valued maps and viability theory (Springer-Verlag, Berlin, New York, 1984).
  2. F.H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society Se- ries of Monographs and Advanced Texts (J. Wiley and Sons, Toronto, 1983).
  3. R.W. Cross, 'Properties of some norm related functions of unbounded linear operators', Math. Z. 199 (1988), 285-303.
  4. R.W. Cross, 'Unbounded strictly singular operators', Nederl. Akad. Wetensch. Indag. Math. 91 (1988), 245-248.
  5. R.W. Cross, Multivalued linear operators, Monographs and Textbooks in Pure and Ap- plied Mathematics 213 (Marcel Dekker, New York, 1998).
  6. D. van Dulst, 'On strictly singular operators', Compositio Math 23 (1971), 169-183.
  7. A. Favini and A. Yagi, 'Multivalued linear operators and degenerate evolution equations', Ann. Mat. Pura. Appl. (4) 163 (1993), 353-384.
  8. S. Goldberg, Unbounded linear operators. Theory and Applications (McGraw-Hill, New York, 1966).
  9. M. Gromov, Partial differential relations (Springer-Verlag, Berlin, 1986).
  10. T. Kato, 'Perturbation theory for nullity, deficiency, and other quantities of linear oper- ators', J. Anal. Math. 6 (1958), 273-322.
  11. C. Kuratowski, Topology /(Polska Akademia Nauk, Varsovia, 1952).
  12. L.E. Labuschagne, Functions of operators and the classes associated with them, (Ph. D. thesis) (Univ. Cape Town, 1988).
  13. L.E. Labuschagne, 'Characterisations of partially continuous, strictly cosingular and <£_-type operators', Glasgow Math. J. 33 (1991), 203-212.
  14. J. von Neumann, Functional Operators, II. The Geometry of Orthogonal spaces, Annals of Math. Studies 22 (Princeton University Press, Princeton, N.J., 1950).
  15. A. Pelczynski, 'On strictly singular and strictly cosingular operators I, II', Bull. Acad. Polon. Sci. Ser. Math. Astr. Phys 13 (1965), 31-41.
  16. G.P. Shannon, 'Strictly singular and strictly cosingular operators on topological vector spaces', Proc. Royal Irish Acad. Sci. Sect. A 73 (1973), 303-308.
  17. R.J. Whitley, 'Strictly singular operators and their conjugates', Trans. Amer. Math. Soc 113 (1964), 252-261.
  18. D. Wilcox, Multivalued semi-Fredholm operators in normed linear spaces, (Ph.D. Thesis) (Univ. Cape Town, 2001). Department of Mathematics University of Oviedo, 33007, Oviedo Spain e-mail: seco@pinon.ccu.uniovi.es