Stress-induced anisotropy in brine saturated shale (original) (raw)

Impact of fabric, microcracks and stress field on shale anisotropy

Geophysical Journal International, 2006

Few data are available on shales in terms of seismic to ultrasonic properties and anisotropy, although all are important with regards to imaging problems often encountered in such lithologies. Additionally, mechanisms causing changes in these properties are not well documented due to the fine grain size of such materials and time required for testing under controlled pore pressure conditions. The results presented here are derived from a set of experiments run on Muderong Shale with pore pressure control in order to evaluate the effect of stress magnitude and stress anisotropy on ultrasonic response. This shale was noted to have a linear velocitymean effective stress response and extremely high anisotropy, both likely the result of the presence of fluid-filled cracks in a low-permeability porous medium. Changes in velocity and V p /V s ratios are dependent on both stress and smectite content. S-wave velocity is significantly affected by the presence of smectite in this and other shales and at low stress (<20 MPa) is less sensitive to stress change than P-wave velocity. V p /V s ratios are noted to increase in this shale up to 20 MPa effective stress, then decrease slightly due to stress-induced loss of interlayer water in smectite. Intrinsic anisotropy comes from composition, a strong compaction fabric and the presence of microfractures; changes to ultrasonic anisotropy are the result of the magnitude of the stresses, their orientation with respect to the fractures and the degree of stress anisotropy.

Stress anisotropy and velocity anisotropy in low porosity shale

Tectonophysics, 2011

Shales are known for often marked intrinsic anisotropy of many of their properties, including strength, permeability and velocity for example. In addition, it is well known that anisotropic stress fields can also have a significant impact on anisotropy of velocity, even in an isotropic medium. This paper sets out to investigate the ultrasonic velocity response of well-characterised low porosity shales from the Officer Basin in Western Australia to both isotropic and anisotropic stress fields and to evaluate the velocity response to the changing stress field. During consolidated undrained multi-stage triaxial tests on core plugs cut normal to bedding, V pv increases monotonically with increasing effective stress and V s1 behaves similarly although with some scatter. V ph and V sh remain constant initially but then decrease within each stage of the multi-stage test, although velocity from stage to stage at any given differential stress increases. This has the impact of decreasing both P-wave (ε) and S-wave anisotropy (γ) through application of differential stress within each loading stage. However, increasing the magnitude of an isotropic stress field has little effect on the velocity anisotropies. The intrinsic anisotropy of the shale remains reasonably high at the highest confining pressures. The results indicate the magnitude and orientation of the stress anisotropy with respect to the shale microfabric has a significant impact on the velocity response to changing stress fields.

Ultrasonic velocity and attenuation anisotropy of shales, Whitby, United Kingdom

GEOPHYSICS, 2015

We have conducted ultrasonic experiments, between 0.3 and 1 MHz, to measure velocity and attenuation ([Formula: see text]) anisotropy of P- and S-waves in dry Whitby Mudstone samples as a function of stress. We found the degree of anisotropy to be as large as 70% for velocity and attenuation. The sensitivity of P-wave anisotropy change with applied stress is more conspicuous than for S-waves. The closure of large aspect-ratio pores (and/or micro cracks) seems to be a dominant mechanism controlling the change of anisotropy. Generally, the highest attenuation is perceived for samples that have their bed layering perpendicular ([Formula: see text]) to the wave path. The observed attenuation in the samples is partly due to the scattering on the different layers, and it is partly due to the intrinsic attenuation. Changes in attenuation due to crack closure during the loading stage of the experiment are an indication of the intrinsic attenuation. The remaining attenuation can then be attr...

Stress dependency of elastic properties of shales: The effect of uniaxial stress

2011

Understanding seismic anisotropy in shales is important for quantitative interpretation of seismic data, 4D monitoring and pore pressure prediction. Along with intrinsic anisotropy caused by preferred mineral orientation that is common in shales, anisotropic stress is an important factor that affects shale elastic response. While variations of elastic coefficients with anisotropic stress have been the subject of experimental studies, theoretical insight is still largely lacking. Here we suggest a new model that allows parameterization of the stress dependency of elastic coefficients of shales under anisotropic stress conditions. We show that the parameterization requires four parameters, namely, specific tangential compliance of a single crack, the ratio of normal to tangential compliances, characteristic pressure and a crack orientation anisotropy parameter. These parameters can be estimated from experimentally measured stress sensitivity of elastic coefficients in shales to isotropic stress.

Elastic wave velocity evolution of shales deformed under uppermost crustal conditions

Journal of Geophysical Research: Solid Earth

Conventional triaxial tests were performed on a series of samples of Tournemire shale along different orientations relative to bedding (0°, 90°). Experiments were carried out up to failure at increasing confining pressures ranging from 2.5 to 80 MPa, and at strain rates ranging between 3 × 10 −7 s −1 and 3 × 10 −5 s −1. During each experiment, P and Swave elastic velocities were continuously measured along many raypaths with different orientations with respect to bedding and maximum compressive stress. This extensive velocity measurement setup allowed us to highlight the presence of plastic mechanisms such as mineral reorientation during deformation. The evolution of elastic anisotropy was quantified using Thomsen's parameters which were directly inverted from measurement of elastic wave velocity. Brittle failure was preceded by a change in P wave anisotropy, due to both crack growth and mineral reorientation. Anisotropy variations were largest for samples deformed perpendicular to bedding, at the onset of rupture. Anisotropy reversal was observed at the highest confining pressures. For samples deformed parallel to bedding, the P wave anisotropy change is weaker.

Static and dynamic pressure sensitivity anisotropy of a calcareous shale

Geophysical Prospecting, 2016

Optimizing the productivity of nonconventional, low-permeability "shale" reservoirs requires detailed knowledge of the mechanical properties of such materials. These rocks' elastic anisotropy is acknowledged but usually ignored due to difficulties in obtaining such information. Here we study in detail the dynamic and static elastic properties of a suite of calcareous mudstones from the nonconventional Duvernay reservoir of Alberta, Canada. The complete set of transversely isotropic elastic constants is obtained from strategically oriented ultrasonic transducers to confining pressures of 90 MPa. Wave speed anisotropies of up to 35% are observed at even the highest confining pressures. Furthermore, the stress sensitivity of the wave speeds, and hence moduli, is itself highly dependent on direction with speeds taken perpendicular to the bedding plane being highly nonlinearly dependent on pressure, whereas those along the bedding plane show, unexpectedly, nearly no pressure dependence. These observations are in qualitative agreement with the preferentially oriented porosity and minerals seen in scanning electron microscope images. These results may be significant to the interpretation of sonic logs and azimuthal amplitude versus offset for principal stress directions, for the concentration of stress within such formations, and for estimation of static engineering moduli from sonic log wave speeds.

Shale dynamic properties and anisotropy under triaxial loading: Experimental and theoretical investigations

PHYSICS AND CHEMISTRY OF THE EARTH, 2007

This paper is concerned with the experimental identification of the whole dynamic elastic stiffness tensor of a transversely isotropic clayrock from a single cylindrical sample under loading. Measurement of elastic wave velocities (pulse at 1 MHz), obtained under macroscopically undrained triaxial loading conditions are provided. Further macroscopic (laboratory scale) interpretation of the velocity measurements is performed in terms of (i) dynamic elastic parameters; and (ii) elastic anisotropy. Experiments were performed on a Callovo-Oxfordian shale, Jurassic in age, recovered from a depth of 613 m in the eastern part of Paris basin in France. Moreover, a physically-based micromechanical model is developed in order to quantify the damaged state of the shale under loading through macroscopic measurements. This model allows for the identification of the pertinent parameters for a general transversely isotropic orientational distribution of microcracks, superimposed on the intrinsic transverse isotropy of the rock. It is directly inspired from experimental observations and measurements. At this stage, second-and fourth-rank tensors a ij and b ijkl are identified as proper damage parameters. However, they still need to be explicited in terms of micromechanical parameters for the complex case of anisotropy. An illustration of the protocole of this microstructural data recovery is provided in the simpler case of isotropy. This microstructural insight includes cavities geometry, orientation and fluid-content.