dual role methylation hTERT (original) (raw)
Related papers
Nucleic Acids Research, 2007
Expression of hTERT is the major limiting factor for telomerase activity. We previously showed that methylation of the hTERT promoter is necessary for its transcription and that CTCF can repress hTERT transcription by binding to the first exon. In this study, we used electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) to show that CTCF does not bind the methylated first exon of hTERT. Treatment of telomerase-positive cells with 5-azadC led to a strong demethylation of hTERT 5 0 -regulatory region, reactivation of CTCF binding and downregulation of hTERT. Although complete hTERT promoter methylation was associated with full transcriptional repression, detailed mapping showed that, in telomerase-positive cells, not all the CpG sites were methylated, especially in the promoter region. Using a methylation cassette assay, selective demethylation of 110 bp within the core promoter significantly increased hTERT transcriptional activity. This study underlines the dual role of DNA methylation in hTERT transcriptional regulation. In our model, hTERT methylation prevents binding of the CTCF repressor, but partial hypomethylation of the core promoter is necessary for hTERT expression.
Regulation of the human catalytic subunit of telomerase (hTERT)
Gene, 2012
Over the past decade, there has been much interest in the regulation of telomerase, the enzyme responsible for maintaining the integrity of chromosomal ends, and its crucial role in cellular immortalization, tumorigenesis, and the progression of cancer. Telomerase activity is characterized by the expression of the telomerase reverse transcriptase (TERT) gene, suggesting that TERT serves as the major limiting agent for telomerase activity. Recent discoveries have led to characterization of various interactants that aid in the regulation of human TERT (hTERT), including numerous transcription factors; further supporting the pivotal role that transcription plays in both the expression and repression of telomerase. Several studies have suggested that epigenetic modulation of the hTERT core promoter region may provide an additional level of regulation. Although these studies have provided essential information on the regulation of hTERT, there has been ambiguity of the role of methylation within the core promoter region and the subsequent binding of various activating and repressive agents. As a result, we found it necessary to consolidate and summarize these recent developments and elucidate these discrepancies. In this review, we focus on the co-regulation of hTERT via transcriptional regulation, the presence or absence of various activators and repressors, as well as the epigenetic pathways of DNA methylation and histone modifications.
Cancer research, 2001
The immortal phenotype of most human cancers is attributable to telomerase expression. However, a number of immortal cell lines and tumors achieve telomere maintenance in the absence of telomerase via alternative mechanisms known as ALT (alternative lengthening of telomeres). Here we show that the promoter of the telomerase RNA gene (hTERC) is methylated in three of five ALT cell lines and is associated with a total absence of hTERC expression in the three lines. Treatment with 5-azacytidine in combination with trichostatin A resulted in partial demethylation of the hTERC promoter and expression of the gene. Partial methylation was detected in tumors (5%) and in immortal cell lines (27%). Cell lines with partial methylation express hTERC. Only in ALT cell lines does there appear to be a strong correlation between hTERC promoter hypermethylation and lack of hTERC expression.
Cancer Research, 2007
hTERT, which encodes the catalytic subunit of telomerase and is expressed in most immortalized and cancer cells, has been reported to have increased DNA methylation in its promoter region in many cancers. This pattern is inconsistent with observations that DNA methylation of promoter CpG islands is typically associated with gene silencing. Here, we provide a comprehensive analysis of promoter DNA methylation, chromatin patterns, and expression of hTERT in cancer and immortalized cells. Methylation-specific PCR and bisulfite sequencing of the hTERT promoter in breast, lung, and colon cancer cells show that all cancer cell lines retain alleles with little or no methylation around the transcription start site despite being densely methylated in a region 600 bp upstream of the transcription start site. By real-time reverse transcription-PCR, all cancer cell lines express hTERT. Chromatin immunoprecipitation (ChIP) analysis reveals that both active (acetyl-H3K9 and dimethyl-H3K4) and inactive (trimethyl-H3K9 and trimethyl-H3K27) chromatin marks are present across the hTERT promoter. However, using a novel approach combining methylation analysis of ChIP DNA, we show that active chromatin marks are associated with unmethylated DNA, whereas inactive marks of chromatin are associated with methylated DNA in the region around the transcription start site. These results show that DNA methylation patterns of the hTERT promoter (À150 to +150 around the transcription start) are consistent with the usual dynamics of gene expression in that the absence of methylation in this region and the association with active chromatin marks allow for the continued expression of hTERT.
Studies on the Role of hTERT – a Telomerase Regulator of DNA Methylation in Cervical Cancer
Madridge Journal of Case Reports and Studies, 2020
Telomerase is a cellular reverse transcriptase which stabilizes telomere length by adding hexameric TTAGGG repeats onto the telomeric ends of chromosomes. Expression of telomerase occurs in germ cells and stem cells but not in normal (somatic) cells. However, in many tumors, telomerase is activated, which is one of the immortalization steps. In humans, telomerase expression is regulated by a telomerase subunit called hTERT. The promoter region of the gene that encodes hTERT is located in a CpG island and was shown to be regulated, at least in part, by DNA methylation. In this study, we have analyzed the methylation status of the hTERT gene in primary squamous cell carcinomas, SCC-1 and SCC-2, and HPV+ cervical tissue scrapes, moderate dyskaryosis and mild dyskaryosis. By using the bisulfite genomic sequencing assay, the region between +90 bp and +566 bp within the gene was analyzed. We found that the primary squamous cell carcinoma SCC-1, which consists of 70% carcinoma cells, was more methylated than SCC-2, which consisted of 40% carcinoma cells. However, the number of methylated CpGs in cervical scrapes classified as moderate dyskaryosis and mild dyskaryosis were higher than in SCC-2. In the present study, we demonstrated the importance of DNA methylation profile at hTERT promoter site as a promising biomarker for cervical cancer. Further, it also provides a possible mechanism into the epigenetic regulation of hTERT in various other cancer developments.
Methylation of the human telomerase gene CpG island
Cancer research, 2000
The acquisition of expression of hTERT, the catalytic subunit of the telomerase enzyme, seems to be an essential step in the development of a majority of human tumors. However, little is known about the mechanisms preventing telomerase gene expression in normal and transformed cells that do not express hTERT. Using a methylation-specific PCR-based assay, we have found that the CpG island associated with the hTERT gene is unmethylated in telomerase-negative primary tissues and nonimmortalized cultured cells, indicating that mechanisms independent of DNA methylation are sufficient to prevent hTERT expression. The hTERT CpG island is methylated in many telomerase-negative and telomerase-positive cultured cells and tumors, but the extent of methylation did not correlate with expression of hTERT. Demethylation of DNA with 5-azacytidine in two cell lines induced expression of hTERT, suggesting that DNA methylation can contribute to hTERT repression in some cells. Together, these data show...
Carcinogenesis, 2002
Telomerase, the ribonucleoprotein complex involved in telomere maintenance, is composed of two main components: hTERT and hTERC. hTERT seems to be the rate-limiting factor for telomerase activity, although hTERC expression was also shown to correlate to a certain extent with telomerase reactivation. To determine whether the absence of hTERC expression could be the consequence of DNA methylation, we quantified hTERC RNA in 60 human samples (19 telomerase-negative normal tissues, nine telomerase-positive and 22 telomerase-negative tumor tissues, eight telomerase-positive and two telomerase-negative cell lines) using a quantitative dot blot on RT-PCR products. Most of the normal tissues did not express hTERC whereas, in telomerase-positive cell lines and in telomerasepositive tumor tissues, a strong up-regulation was observed, suggesting that hTERC transcription is up-regulated during tumorigenesis. The two telomerase-negative cell lines did not express hTERC. In a series of 22 telomerase-negative soft tissue sarcomas (STS), half did not express hTERC at all, or only weakly, whereas a wide range of expression was observed in the other half. As methylation might be involved in hTERC silencing, we examined the methylation pattern in all samples by direct sequencing and methylation-specific single stand conformation analysis after bisulfite modification. hTERC methylation was never observed, neither in normal nor in tumor tissues. Furthermore, there was no correlation between hTERC expression and proliferation, telomere length or hTERT expression in telomerase-negative STS. In contrast, three of eight telomerase-positive cell lines and the two telomerasenegative cell lines were found to be hypermethylated, suggesting that the methylation observed may occur during cell line establishment. In conclusion, this study shows that hTERC expression is indeed regulated during carcinogenesis, but this regulation is unlikely to depend on hTERC methylation, cell proliferation rate, telomere length or hTERT expression.
Carcinogenesis, 2008
Human telomerase reverse transcriptase (hTERT) is expressed in most cancer cells. Paradoxically, its promoter is embedded in a hypermethylated CpG island. A short region escapes to this alteration, allowing a basal level of transcription. However, the methylation of adjacent regions may play a role in the maintenance of low hTERT expression. It is now well established that methyl-CpG binding domain proteins mediate the transcriptional silencing of hypermethylated genes. The potential involvement of these proteins in the control of hTERT expression was firstly investigated in HeLa cells. Chromatin immunoprecipitation assays showed that only methyl-CpG-binding domain protein 2 (MBD2) associated the hypermethylated hTERT promoter. In MBD2 knockdown HeLa cells, constitutively depleted in MBD2, neither methyl CpG binding protein 2 (MeCP2) nor MBD1 acted as substitutes for MBD2. MBD2 depletion by transient or constitutive RNA interference led to an upregulation of hTERT transcription that can be downregulated by expressing mouse Mbd2 protein. Our results indicate that MBD2 is specifically and directly involved in the transcriptional repression of hTERT in HeLa cells. This specific transcriptional repression was also observed in breast, liver and neuroblastoma cancer cell lines. Thus, MBD2 seems to be a general repressor of hTERT in hTERT-methylated telomerase-positive cells.
Cancer research, 2005
The presence of active telomere maintenance mechanisms in immortal cells allows the bypass of senescence by maintaining telomere length. In most immortal cell lines and tumors, telomere maintenance is attributable to telomerase reactivation. However, a number of immortal cell lines and tumors can achieve telomere maintenance in the absence of detectable telomerase activity by the alternative lengthening of telomere (ALT) mechanism. Epigenetic mechanisms have been implicated in the regulation of telomerase expression. We show that specific modifications within the chromatin environment of the hTR and hTERT promoters correlate with expression of hTR and hTERT in ALT, normal and telomerase-positive tumor cell lines. Lack of expression of hTR and hTERT in ALT cell lines is associated with histone H3 and H4 hypoacetylation and methylation of Lys9 histone H3. Conversely, hTR and hTERT expression in telomerase-positive cell lines is associated with hyperacetylation of H3 and H4 and methyla...
hTERT methylation is necessary but not sufficient for telomerase activity in colorectal cells
Oncology letters, 2011
Colorectal cancers exhibit a high telomerase activity, usually correlated with the hypermethylation of the promoter of its hTERT catalytic subunit. Although telomerase is not expressed in normal tissue, certain proliferative somatic cells such as intestinal crypt cells have demonstrated telomerase activity. The aim of this study was to determine whether a correlation exists between telomerase activity, levels of hTERT methylation and telomere length in tumoral and normal colorectal tissues. Tumor, transitional and normal tissues were obtained from 11 patients with a colorectal cancer. After bisulfite modification of genomic DNA, hTERT promoter methylation was analyzed by methylation-sensitive single-strand conformation analysis (MS-SSCA). Telomerase activity and telomere length were measured by a fluorescent-telomeric repeat amplification protocol assay and by Southern blotting, respectively. A significant increase of hTERT methylation and telomerase activity, and a reduction of the...