efMRI Evidence for Implicit Emotional Prosodic Processing (original) (raw)

Specific brain networks during explicit and implicit decoding of emotional prosody

Cerebral cortex (New York, N.Y. : 1991), 2012

To better define the underlying brain network for the decoding of emotional prosody, we recorded high-resolution brain scans during an implicit and explicit decoding task of angry and neutral prosody. Several subregions in the right superior temporal gyrus (STG) and bilateral in the inferior frontal gyrus (IFG) were sensitive to emotional prosody. Implicit processing of emotional prosody engaged regions in the posterior superior temporal gyrus (pSTG) and bilateral IFG subregions, whereas explicit processing relied more on mid STG, left IFG, amygdala, and subgenual anterior cingulate cortex. Furthermore, whereas some bilateral pSTG regions and the amygdala showed general sensitivity to prosody-specific acoustical features during implicit processing, activity in inferior frontal brain regions was insensitive to these features. Together, the data suggest a differentiated STG, IFG, and subcortical network of brain regions, which varies with the levels of processing and shows a higher sp...

Cerebral processing of linguistic and emotional prosody: fMRI studies

Progress in Brain Research, 2006

During acoustic communication in humans, information about a speaker's emotional state is predominantly conveyed by modulation of the tone of voice (emotional or affective prosody). Based on lesion data, a right hemisphere superiority for cerebral processing of emotional prosody has been assumed. However, the available clinical studies do not yet provide a coherent picture with respect to interhemispheric lateralization effects

The neural response to emotional prosody, as revealed by functional magnetic resonance imaging

Neuropsychologia, 2003

Prosody is an important feature of language, comprising intonation, loudness, and tempo. Emotional prosodic processing forms an integral part of our social interactions. The main aim of this study was to use bold contrast fMRI to clarify the normal functional neuroanatomy of emotional prosody, in passive and active contexts. Subjects performed six separate scanning studies, within which two different conditions were contrasted: (1) "pure" emotional prosody versus rest; (2) congruent emotional prosody versus 'neutral' sentences; (3) congruent emotional prosody versus rest; (4) incongruent emotional prosody versus rest; (5) congruent versus incongruent emotional prosody; and (6) an active experiment in which subjects were instructed to either attend to the emotion conveyed by semantic content or that conveyed by tone of voice. Data resulting from these contrasts were analysed using SPM99. Passive listening to emotional prosody consistently activated the lateral temporal lobe (superior and/or middle temporal gyri). This temporal lobe response was relatively right-lateralised with or without semantic information. Both the separate and direct comparisons of congruent and incongruent emotional prosody revealed that subjects used fewer brain regions to process incongruent emotional prosody than congruent. The neural response to attention to semantics, was left lateralised, and recruited an extensive network not activated by attention to emotional prosody. Attention to emotional prosody modulated the response to speech, and induced right-lateralised activity, including the middle temporal gyrus. In confirming the results of lesion and neuropsychological studies, the current study emphasises the importance of the right hemisphere in the processing of emotional prosody, specifically the lateral temporal lobes.

“It’s not what you say, but how you say it”: a reciprocal temporo-frontal network for affective prosody

Frontiers in Human Neuroscience, 2010

We employed a parametric design, using emotional vocal stimuli with varying degrees of acoustic cue saliency to create graded levels of stimulus-driven prosodic ambiguity. A vocal stimulus with high cue salience has high levels of acoustic cues that are typically associated with the vocal expression of a particular emotion and presents an acoustic signal rich in affective information, whereas a vocal stimulus with low cue salience has low levels of the relevant acoustic cues and is more ambiguous. We generated a four-choice vocal emotion identification task (anger, fear, happiness and no expression) to examine how acoustic-cue level impacts affective prosodic comprehension. As our independent variable, we used the acoustic cue which best correlated with performance on the emotion identifi cation task -this cue served as a proxy for "cue saliency". For happiness and fear, we utilized pitch variability -the standard deviation of the fundamental frequency (F0 SD ) as a cue salience proxy, and for anger we used proportion of high-frequency spectral energy [i.e. elevated ratios of energy above vs. below 500 Hz (HF 500 )]. These cues are important predictors of recognition of the respective emotions and pitch variability and spectral energy ratios are important for emotion categorization .

Lateralization of emotional prosody in the brain: an overview and synopsis on the impact of study design

Progress in Brain Research, 2006

Recently, research on the lateralization of linguistic and nonlinguistic (emotional) prosody has experienced a revival. However, both neuroimaging and patient evidence do not draw a coherent picture substantiating right-hemispheric lateralization of prosody and emotional prosody in particular. The current overview summarizes positions and data on the lateralization of emotion and emotional prosodic processing in the brain and proposes that: (1) the realization of emotional prosodic processing in the brain is based on differentially lateralized subprocesses and (2) methodological factors can influence the lateralization of emotional prosody in neuroimaging investigations. Latter evidence reveals that emotional valence effects are strongly right lateralized in studies using compact blocked presentation of emotional stimuli. In contrast, data obtained from event-related studies are indicative of bilateral or left-accented lateralization of emotional prosodic valence. These findings suggest a strong interaction between language and emotional prosodic processing.

On the lateralization of emotional prosody: An event-related functional MR investigation

Brain and Language, 2003

In order to investigate the lateralization of emotional speech we recorded the brain responses to three emotional intonations in two conditions, i.e., ''normal'' speech and ''prosodic'' speech (i.e., speech with no linguistic meaning, but retaining the Ôslow prosodic modulationsÕ of speech). Participants listened to semantically neutral sentences spoken with a positive, neutral, or negative intonation in both conditions and judged how positive, negative, or neutral the intonation was on a five-point scale. Core peri-sylvian language areas, as well as some frontal and subcortical areas were activated bilaterally in the normal speech condition. In contrast, a bilateral fronto-opercular region was active when participants listened to prosodic speech. Positive and negative intonations elicited a bilateral fronto-temporal and subcortical pattern in the normal speech condition, and more frontal activation in the prosodic speech condition. The current results call into question an exclusive right hemisphere lateralization of emotional prosody and expand patient data on the functional role of the basal ganglia during the perception of emotional prosody.

Identification of emotional intonation evaluated by fMRI

Journal of Neuroimmunology, 2005

During acoustic communication among human beings, emotional information can be expressed both by the propositional content of verbal utterances and by the modulation of speech melody (affective prosody). It is well established that linguistic processing is bound predominantly to the left hemisphere of the brain. By contrast, the encoding of emotional intonation has been assumed to depend specifically upon right-sided cerebral structures. However, prior clinical and functional imaging studies yielded discrepant data with respect to interhemispheric lateralization and intrahemispheric localization of brain regions contributing to processing of affective prosody. In order to delineate the cerebral network engaged in the perception of emotional tone, functional magnetic resonance imaging (fMRI) was performed during recognition of prosodic expressions of five different basic emotions (happy, sad, angry, fearful, and disgusted) and during phonetic monitoring of the same stimuli. As compared to baseline at rest, both tasks yielded widespread bilateral hemodynamic responses within frontal, temporal, and parietal areas, the thalamus, and the cerebellum. A comparison of the respective activation maps, however, revealed comprehension of affective prosody to be bound to a distinct right-hemisphere pattern of activation, encompassing posterior superior temporal sulcus (Brodmann Area [BA] 22), dorsolateral (BA 44/45), and orbitobasal (BA 47) frontal areas. Activation within left-sided speech areas, in contrast, was observed during the phonetic task. These findings indicate that partially distinct cerebral networks subserve processing of phonetic and intonational information during speech perception.

Lateralized processing in human auditory cortex during the perception of emotional prosody

2006

The aim of the present fMRI-study was to investigate the influence of different word prosodies on the activation of the auditory cortex (AC) of 24 subjects. Pseudowords and semantically neutral words were presented with neutral prosody in experiment I and with emotional prosodies in experiment II. We applied two lexical tasks i.e. detecting words or pseudowords. The control task was