Heavy-metal effects on lipid peroxidation and antioxidant defence enzymes in mussels Mytilus galloprovincialis (original) (raw)
Related papers
Marine Pollution Bulletin, 2007
Mussels are used as sentinel organisms and bioindicators to evaluate the toxic effects of chemical pollutants in marine organisms, especially heavy metals, representing an important tool for biomonitoring environmental pollution in coastal areas. Antioxidant defence enzymes play an important role in cellular antioxidant defence systems and protect from oxidative damage by reactive oxygen species (ROS). Indigenous mussels Mytilus galloprovincialis of the Saronikos Gulf of Greece were used for monitoring heavy metal pollution in three polluted sites in the area and in one unpolluted site. Seasonal variations of the activity of antioxidant defence enzymes, superoxide dismutase (SOD) and catalase (CAT), as well as lipid peroxidation (LP) were measured as biomarkers in a period of three years in relation to concentrations of trace metals in their gills and mantle and compared to mussels from an unpolluted sampling site. SOD activity increased at least 2 fold at the polluted sites when compared to the control site (the high activity was recorded in the spring time). CAT activity was increased 2-3 times at the polluted sites, with high activity in the winter and spring time, compared to the control site. LP concentration was twice higher at the polluted sites, following the same seasonal pattern. Trace metals contents in mussels collected at polluted sites were 3-4 fold higher compared to the control site and showed moderate variations along the months, with a winter maximum followed by a summer pre-spawning minimum matching the seasonal trends of temperature and salinity. Our results showed that metal pollution in the Elefsis Bay (the most polluted coastal area) causes relatively medium levels of oxidative stress in tissues of mussels due to cellular oxy-radical generation. This study, which is the first in the area, showed that seasonal variations of the activity of antioxidant defence enzymes and LP concentrations in mussels can be used as potential biomarkers of toxicity for long-term monitoring in marine coastal ecosystems.
Clinica Chimica Acta, 2005
Contaminant-related changes in antioxidative processes in the freshwater crustacea Daphnia magna exposed to model redox cycling contaminant were assessed. Activities of key antioxidant enzymes including catalase, superoxide dismutase, glutathione peroxidase and glutathione S-transferases and levels of lipid peroxidation measured as thiobarbituric acid-reactive substances (TBARS) and lipofucsin pigment content were determined in D. magna juveniles after being exposed to sublethal levels of menadione, paraquat, endosulfan, cadmium and copper for 48 h. Results denoted different patterns of antioxidant enzyme responses, suggesting that different toxicants may induce different antioxidant/prooxidant responses depending on their ability to produce reactive oxygen species and antioxidant enzymes to detoxify them. Low responses of antioxidant enzyme activities for menadione and endosulfan, associated with increasing levels of lipid peroxidation and enhanced levels of antioxidant enzyme activities for paraquat, seemed to prevent lipid peroxidation, whereas high levels of both antioxidant enzyme activities and lipid peroxidation were found for copper. For cadmium, low antioxidant enzyme responses coupled with negligible increases in lipid peroxidation indicated low potential for cadmium to alter the antioxidant/prooxidant status in Daphnia. Among the studied enzymes, total glutathione peroxidase, catalase and glutathione S-transferase appeared to be the most responsive biomarkers of oxidative stress.
Aquatic Toxicology, 2004
In the present work, we investigated in the blue mussel (Mytilus edulis) the seasonal variations in the activity of several enzymes, which participate in the cellular defence system that is involved in the adaptive response of organisms to pollution. The activity levels of glutathione S-transferase, glutathione peroxidase, glutathione reductase and three isoforms of Cu/Zn-superoxide dismutase in gills and digestive glands of this bivalve species were used as biomarkers. Adult wild mussels were collected in Le Havre harbour (north-west coast of France) from four sites with different environmental conditions. Measurements of enzymatic activities were performed on tissue homogenates except for Cu/Zn-superoxide dismutase for which the activity of each isoform was detected on gel after isoelectric focusing. Seasonal variations in antioxidant enzyme activities were observed, characterized by low activity levels during winter, a period where oxidative stress is known to be high in bivalves. A clear-cut discrepancy between tissues was noted concerning inter-individual variability of data, which was low in gills but high in digestive gland, leading to the conclusion that gills could preferentially be used in biomonitoring studies dealing with oxidative stress in the blue mussel. As compared to animals from the reference site, mussels from the most polluted sites exhibited changes in the Cu/Znsuperoxide dismutase pattern characterized by an increase in the activity of the more acidic isoform without significant variation of the total activity of the enzyme. The most striking data were recorded in mussels collected at the outlet of a thermoelectric power plant. When compared to animals from the reference site, not only their gills showed a highly significant induction of the most acidic isoform of the Cu/Zn-superoxide dismutase (+340%, P < 0.001) but also high levels of glutathione S-transferase activity (+269%, P < 0.001). This study points out the usefulness of Cu/Zn-superoxide dismutase expression pattern as a biomarker of exposure to environmental stress rather than measurement of total activity of the enzyme, in field studies using Mytilus edulis. selecting a battery of biomarkers for evaluating the impact of contamination on marine organisms.
Responses of antioxidants and lipid peroxidation in mussels to oxidative damage exposure
Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology, 1991
1. The aim of this work was to evaluate the relationships between free radical scavengers and lipid peroxidation in the common mussel Mytilus edulis. 2. Mussels were exposed to compounds known for their ability to produce free radicals (carbon tetrachloride, CCl4) and reactive oxygen species via redox cycling (menadione) and the effects on digestive gland, gills and remaining tissues were studied. 3. Lipid peroxidation parameters and the status of free radical scavengers (glutathione, vitamins A, E and C) were affected more by exposure to menadione than to CCl4. 4. The observed changes in the free radical scavengers content are indicative of a role in detoxication of damaging reactive species.
Ocean & Coastal Management, 2017
The bivalve mollusks are among the aquatic bioindicators that are commonly used in monitoring water pollution studies, thanks to their behavior and metabolism. They are directly affected by the level of pollution in a given site. During this research, the study of the biological response in gills, hepatopancreas and muscles of indigenous mussels Mytilus galloprovincialis were used for monitoring emissary's pollution in four polluted sites in the coastal environment of Casablanca. Seasonal variations of the activity of antioxidant defence enzymes, catalase (CAT), glutathione S-transferase (GST), as well as lipid peroxidation (LP) were measured as biomarkers within a one year period and compared to mussels from an unpolluted sampling site. This study was completed by analysing a series of abiotic factors (temperature, pH and conductivity) and chemicals (heavy metals; Hg, Pb, Cu) into seawater. Our result showed that the availability of metallic contamination and the environmental stress conditions causes relatively an oxidative stress in this species at each station studied. While the pollution's level clearly varies according to the sampling campaign. Furthermore, they revealed a significant increase in GST activities and LP concentrations and significant decrease in CAT activities in mussels collected in sites with industrial contamination. This negative correlation suggested that the organisms at this location are exposed to a relatively higher level of oxidative stress. This first study in the area confirm that variations of antioxidant defence enzymes activities and LP concentrations in mussels could be used as prospective biomarkers of toxicity in environmental monitoring programs.
Antioxidant Defense System Alternations in Fish as a Bio-Indicator of Environmental Pollution
Egyptian journal of aquatic biology and fisheries, 2017
The present study carried out to clarify the impact of heavy metals (Fe, Zn, Cu, Mn and Cd) pollution of Rosetta Branch on the antioxidant defence system activities and lipid peroxidation indicator MDA levels in O. niloticus tissues (liver and white muscles) collected from three stations from Rosetta Branch of River Nile in summer 2014 and winter 2015. Rosetta Branch of River Nile exposed to high input of agricultural drainage water, sewage and industrial waste water which influence the living organisms especially fish. In the present study, results revealed that high concentrations of heavy metals (Fe, Zn, Cu, Mn and Cd) were detected in water and fish samples, especially in winter. In muscles of O. niloticus, the accumulation patterns of heavy metals were in the following order: Fe > Zn > Mn > Cu and Cd. The bioaccumulation factor (BAF) in winter was higher than summer. Antioxidant enzymes (SOD, CAT, GPx, GST and GR) activities and the indicator of lipid peroxidation MDA levels in liver and white muscles of O. niloticus were found to be significantly increased compared to the reference values, especially in winter. Moreover, the antioxidant enzymes activities and MDA levels were higher in liver than white muscles. These remarkable alterations in the activity of the selected enzymes in the liver and white muscles of the O. niloticus go in parallel with the elevation in the levels of heavy metals detected in the water of Rosetta branch, as a result of pollution stress in these areas. Thus we conclude that, the altered activities of SOD, CAT, GPx, GST and GR) and MDA levels could be useful biomarkers of water pollution.
Bulletin of Environmental Contamination and Toxicology, 2015
We examined the effects of environmental remediation on the heavy metal concentration and lipid peroxidation activity in the digestive gland and gills of the marine mussel Crenomytilus grayanus. Changes in heavy metal concentrations and lipid peroxidation biomarkers in the tissues of mussels collected at a contaminated site were compared with those obtained from a reference site. Prior to remediation the concentration of Pb, Cu, Cd, Fe and Zn and the levels of malondialdehyde, conjugated dienes and lipofuscin in mussels collected from the contaminated site were significantly increased compared with those obtained from the reference site. Three years after remediation, these parameters did not significantly exceed the reference site parameters, except Pb, whose concentration, though markedly decreased, yet was much higher than in tissues of mussels from the reference site.
Chemosphere, 2010
In the present work, we investigated the potential use of several antioxidant enzymes in wild mussels (Mytilus galloprovincialis) as biomarkers of marine pollution. The enzymatic activity levels of glutathione S-transferase (GST), glutathione peroxidase (GPx) and catalase (CAT) were measured in gills and digestive gland. Those enzymes participate in the cellular defense system that is involved in the adaptive response of organisms to chemical pollution. Adult mussels were collected at five sampling sites located at the Ría de Pontevedra and Ría de Vigo. Seasonal variations in the control site were observed for the CAT activity, but no significant variability was found for GST and GPx. Mussels from the most polluted sites exhibited a significantly greater GST activity compared to the control site (p < 0.05) during the sampling period, whereas GPx and CAT activities have not such a marked pattern. Trace metals, PAHs, PCBs and DDT contents in mussels at sampling sites showed highly significant positive correlations with the GST activity.
Frontiers in Physiology
There is current great international concern about the contribution of environmental pollution to the global burden of disease particularly in the developing, low- and medium-income countries. Industrial activities, urbanization, developmental projects as well as various increased anthropogenic activities involving the improper generation, management and disposal of pollutants have rendered today’s environment highly polluted with various pollutants. These pollutants include toxic metals (lead, cadmium, mercury, arsenic), polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pesticides and diesel exhaust particles most of which appear to be ubiquitous as well as have long-term environmental persistence with a wide range of toxicities such as oxidative stress among others. Oxidative stress, which may arise from increased production of damaging free radicals emanating from increased pollutant burden and depressed bioavailability of antioxidant defenses causes altered biochemica...
The uses of maximum amount of agricultural and industrial chemicals are entering the aquatic environment and being taken up into tissues of aquatic organisms. Different types of pollutants induce a range of toxicity mechanisms, such as oxidative damage to membrane lipids, DNA, and proteins and changes to antioxidant enzymes. Free radical reactions and the production of toxic ROS are known to be responsible for a variety of oxidative damages leading to adverse health effects and diseases. Though some literature is available on pollution induced oxidative stress but it is mostly based on mammalian studies. This assessment reviews current knowledge and advances in the understanding of such oxidative processes in aquatic organisms because of their sensitivity to oxidative pollutants and their potential for environmental toxicology studies. A search of literature was performed to collect the studies that measured the oxidative stress markers of pollution in fish. Studies were searched in Google scholar, Medline, Science direct, research gate, Pub Med, SCOPUS, Web of Science and other websites related to the subject from 1990 to May 2015. Results indicate that escape of activated oxygen during active electron transport is the main source of ROS in man and higher animals. Another possibility is that multiple redox-active flavoproteins also contribute a small fraction to the overall production of oxidants under normal conditions. To maintain proper cellular homeostasis a balance must be struck between the production and consumption of ROS. It is concluded that measurements of lipid peroxidation and DNA damage both in nucleus and mitochondria can be used as potential contenders for general biomarkers of oxidative stress. However, these markers may be noticeable differently in the field than in results found in laboratory studies. Hence a multifaceted approach should be taken in field studies.