X-ray dark-field and phase-contrast imaging using a grating interferometer (original) (raw)

Hard-X-ray dark-field imaging using a grating interferometer

Nature Materials, 2008

Imaging with visible light today uses numerous contrast mechanisms, including bright- and dark-field contrast, phase-contrast schemes and confocal and fluorescence-based methods. X-ray imaging, on the other hand, has only recently seen the development of an analogous variety of contrast modalities. Although X-ray phase-contrast imaging could successfully be implemented at a relatively early stage with several techniques, dark-field imaging, or more generally scattering-based imaging, with hard X-rays and good signal-to-noise ratio, in practice still remains a challenging task even at highly brilliant synchrotron sources. In this letter, we report a new approach on the basis of a grating interferometer that can efficiently yield dark-field scatter images of high quality, even with conventional X-ray tube sources. Because the image contrast is formed through the mechanism of small-angle scattering, it provides complementary and otherwise inaccessible structural information about the specimen at the micrometre and submicrometre length scale. Our approach is fully compatible with conventional transmission radiography and a recently developed hard-X-ray phase-contrast imaging scheme. Applications to X-ray medical imaging, industrial non-destructive testing and security screening are discussed.

Experimental validation of image contrast correlation between ultra-small-angle X-ray scattering and grating-based dark-field imaging using a laser-driven compact X-ray source

Photonics & Lasers in Medicine, 2012

X-ray phase and dark-field contrast have recently been the source of much attention in the field of X-ray imaging, as they both contribute new imaging signals based on physical principles that differ from conventional X-ray imaging. With a so-called Talbot grating interferometer, both phase-contrast and dark-field images are obtained simultaneously with the conventional attenuation-based X-ray image, providing three complementary image modalities that are intrinsically registered. Whereas the physical contrast mechanisms behind attenuation and phase contrast are well understood, a formalism to describe the dark-field signal is still in progress. In this article, we report on correlative experimental results obtained with a grating interferometer and with small-angle X-ray scattering. Furthermore, we use a proposed model to quantitatively describe the results, which could be of great importance for future clinical and biomedical applications of grating-based X-ray imaging.

Inverse geometry for grating-based x-ray phase-contrast imaging

Journal of Applied Physics, 2009

Phase-contrast imaging using conventional polychromatic x-ray sources and grating interferometers has been developed and demonstrated for x-ray energies up to 60 keV. Here, we conduct an analysis of possible grating configurations for this technique and present further geometrical arrangements not considered so far. An inverse interferometer geometry is investigated that offers significant advantages for grating fabrication and for the application of the method in computed tomography ͑CT͒ scanners. We derive and measure the interferometer's angular sensitivity for both the inverse and the conventional configuration as a function of the sample position. Thereby, we show that both arrangements are equally sensitive and that the highest sensitivity is obtained, when the investigated object is close to the interferometer's phase grating. We also discuss the question whether the sample should be placed in front of or behind the phase grating. For CT applications, we propose an inverse geometry with the sample position behind the phase grating.

Hard X-ray phase imaging and tomography using a grating interferometer

Spectrochimica Acta Part B: Atomic Spectroscopy, 2007

An interferometric technique for hard X-rays is presented. It is based on two transmission gratings and a phase-stepping technique, and it provides separate radiographs of the phase and absorption profiles of bulk samples. Tomographic reconstruction yields quantitative threedimensional maps of the X-ray refractive index and of the attenuation coefficient, with a spatial resolution down to a few microns. The method is mechanically robust, it requires little monochromaticity, and can be scaled up to large fields of view. These are important prerequisites for use with laboratory X-ray sources. Numerous applications ranging from wave front sensing to medical radiography are presently under investigation.

X-ray phase imaging with a grating interferometer

Optics Express, 2005

Using a high-efficiency grating interferometer for hard X rays (10-30 keV) and a phase-stepping technique, separate radiographs of the phase and absorption profiles of bulk samples can be obtained from a single set of measurements. Tomographic reconstruction yields quantitative three-dimensional maps of the X-ray refractive index, with a spatial resolution down to a few microns. The method is mechanically robust, requires little spatial coherence and monochromaticity, and can be scaled up to large fields of view, with a detector of correspondingly moderate spatial resolution. These are important prerequisites for use with laboratory X-ray sources.

Advanced phase-contrast imaging using a grating interferometer

Journal of Synchrotron Radiation, 2009

Phase-sensitive X-ray imaging methods can provide substantially increased contrast over conventional absorption-based imaging, and therefore new and otherwise inaccessible information. Differential phase-contrast (DPC) imaging, which uses a grating interferometer and a phase-stepping technique, has been integrated into TOMCAT, a beamline dedicated to tomographic microscopy and coherent radiology experiments at the Swiss Light Source. Developments have been made focusing on the fast acquisition and post-processing of data to enable a high-throughput of samples, with obvious advantages, also through increasing the efficiency of the detecting system, of helping to reduce radiation dose imparted to the sample. A novel aquarium design allows a vertical rotation axis below the sample with measurements performed in aqueous environment. Optimization of the data acquisition procedure enables a full phase volume (1024 x 1024 pixels x 1000 projections x 9 phase steps, i.e. 9000 projections in total) to be acquired in 20 min (with a pixel size of 7.4 microm), and the subsequent post-processing has been integrated into the beamline pipeline for sinogram generation. Local DPC tomography allows one to focus with higher magnification on a particular region of interest of a sample without the presence of local tomography reconstruction artifacts. Furthermore, 'widefield' imaging is shown for DPC scans for the first time, enabling the field of view of the imaging system to be doubled for samples that are larger than the magnification allows. A case study is illustrated focusing on the visualization of soft tissue features, and particularly the substantia nigra of a rat brain. Darkfield images, based on local X-ray scattering, can also be extracted from a grating-based DPC scan: an example of the advantages of darkfield contrast is shown and the potential of darkfield X-ray tomography is discussed.

Theoretical comparison of three X-ray phase-contrast imaging techniques: propagation-based imaging, analyzer-based imaging and grating interferometry

Optics Express, 2012

Various X-ray phase-contrast imaging techniques have been developed and applied over the last twenty years in different domains, such as material sciences, biology and medicine. However, no comprehensive inter-comparison exists in the literature. We present here a theoretical study that compares three among the most used techniques: propagation-based imaging (PBI), analyzer-based imaging (ABI) and grating interferometry (GI). These techniques are evaluated in terms of signal-to-noise ratio, figure of merit and spatial resolution. Both area and edge signals are considered. Dependences upon the object properties (absorption, phase shift) and the experimental acquisition parameters (energy, system point-spread function etc.) are derived and discussed. The results obtained from this analysis can be used as the reference for determining the most suitable technique for a given application.

Limitations imposed by specimen phase gradients on the design of grating based x-ray phase contrast imaging systems

Applied Optics, 2010

X-ray phase contrast imaging is a very promising technique that may lead to significant advancements in a variety of fields, perhaps most notably, medical imaging. The radiation physics group at University College London is currently developing an x-ray phase contrast imaging technique that works with laboratory x-ray sources. This system essentially measures the degree to which photons are refracted by regions of an imaged object. The amount of refraction that may be expected to be encountered in practice impacts strongly upon the design of the imaging system. In this paper, we derive an approximate expression between the properties of archetypal imaged objects encountered in practice and the resulting distribution of refracted photons. This is used to derive constraints governing the design of the system.

High sensitivity X-ray phase contrast imaging by laboratory grating-based interferometry at high Talbot order geometry

Optics Express, 2021

X-ray phase contrast imaging is a powerful analysis technique for materials science and biomedicine. Here, we report on laboratory grating-based X-ray interferometry employing a microfocus X-ray source and a high Talbot order (35th) asymmetric geometry to achieve high angular sensitivity and high spatial resolution X-ray phase contrast imaging in a compact system (total length <1 m). The detection of very small refractive angles (∼50 nrad) at an interferometer design energy of 19 keV was enabled by combining small period X-ray gratings (1.0, 1.5 and 3.0 µm) and a single-photon counting X-ray detector (75 µm pixel size). The performance of the X-ray interferometer was fully characterized in terms of angular sensitivity and spatial resolution. Finally, the potential of laboratory X-ray phase contrast for biomedical imaging is demonstrated by obtaining high resolution X-ray phase tomographies of a mouse embryo embedded in solid paraffin and a formalin-fixed full-thickness sample of human left ventricle in water with a spatial resolution of 21.5 µm.