Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling (original) (raw)

Acylation Targets Endothelial Nitric-oxide Synthase to Plasmalemmal Caveolae

Journal of Biological Chemistry, 1996

Endothelial nitric-oxide synthase (eNOS) generates the key signaling molecule nitric oxide in response to intralumenal hormonal and mechanical stimuli. We designed studies to determine whether eNOS is localized to plasmalemmal microdomains implicated in signal transduction called caveolae. Using immunoblot analysis, eNOS protein was detected in caveolar membrane fractions isolated from endothelial cell plasma membranes by a newly developed detergent-free method; eNOS protein was not found in noncaveolar plasma membrane. Similarly, NOS enzymatic activity was 9.4fold enriched in caveolar membrane versus whole plasma membrane, whereas it was undetectable in noncaveolar plasma membrane. 51-86% of total NOS activity in postnuclear supernatant was recovered in plasma membrane, and 57-100% of activity in plasma membrane was recovered in caveolae. Immunoelectron microscopy showed that eNOS heavily decorated endothelial caveolae, whereas coated pits and smooth plasma membrane were devoid of gold particles. Furthermore, eNOS was targeted to caveolae in COS-7 cells transfected with wild-type eNOS cDNA. Studies with eNOS mutants revealed that both myristoylation and palmitoylation are required to target the enzyme to caveolae and that each acylation process enhances targeting by 10-fold. Thus, acylation targets eNOS to plasmalemmal caveolae. Localization to this microdomain is likely to optimize eNOS activation and the extracellular release of nitric oxide.

Novel Mechanism of Endothelial Nitric Oxide Synthase Activation Mediated by Caveolae Internalization in Endothelial Cells

Circulation Research, 2006

Caveolin-1, the caveolae scaffolding protein, binds to and negatively regulates eNOS activity. As caveolin-1 also regulates caveolae-mediated endocytosis after activation of the 60-kDa albumin-binding glycoprotein gp60 in endothelial cells, we addressed the possibility that endothelial NO synthase (eNOS)-dependent NO production was functionally coupled to caveolae internalization. We observed that gp60-induced activation of endocytosis increased NO production within 2 minutes and up to 20 minutes. NOS inhibitor N G -nitro-L-arginine (L-NNA) prevented the NO production. To determine the role of caveolae internalization in the mechanism of NO production, we expressed dominant-negative dynamin-2 mutant (K44A) or treated cells with methyl-␤-cyclodextrin. Both interventions inhibited caveolae-mediated endocytosis and NO generation induced by gp60. We determined the role of signaling via Src kinase in the observed coupling of endocytosis to eNOS activation. Src activation induced the phosphorylation of caveolin-1, Akt and eNOS, and promoted dissociation of eNOS from caveolin-1. Inhibitors of Src kinase and Akt also prevented NO production. In isolated perfused mouse lungs, gp60 activation induced NO-dependent vasodilation, whereas the response was attenuated in eNOS Ϫ/Ϫ or caveolin-1 Ϫ/Ϫ lungs. Together, these results demonstrate a critical role of caveolae-mediated endocytosis in regulating eNOS activation in endothelial cells and thereby the NO-dependent vasomotor tone. (Circ Res. 2006;99:870-877.)

Targeting and translocation of endothelial nitric oxide synthase

Brazilian Journal of Medical and Biological Research, 1999

This review explores advances in our understanding of the intracellular regulation of the endothelial isoform of nitric oxide synthase (eNOS) in the context of its dynamically regulated subcellular targeting. Nitric oxide (NO) is a labile molecule, and may play important biological roles both within the cell in which it is synthesized and in its interactions with nearby cells and molecules. The localization of eNOS within the cell importantly influences the biological role and chemical fate of the NO produced by the enzyme. eNOS, a Ca 2+ / calmodulin-dependent enzyme, is subject to a complex pattern of intracellular regulation, including co-and post-translational modifications and interactions with other proteins and ligands. In endothelial cells and cardiac myocytes eNOS is localized in specialized plasmalemmal signal-transducing domains termed caveolae; acylation of the enzyme by the fatty acids myristate and palmitate is required for targeting of the protein to caveolae. Targeting to caveolae facilitates eNOS activation following receptor stimulation. In resting cells, eNOS is tonically inhibited by its interactions with caveolin, the scaffolding protein in caveolae. However, following agonist activation, eNOS dissociates from caveolin, and nearly all the eNOS translocates to structures within the cell cytosol; following more protracted incubations with agonists, most of the cytosolic enzyme subsequently translocates back to the cell membrane. The agonist-induced internalization of eNOS is completely abrogated by chelation of intracellular Ca 2+. These rapid receptor-mediated effects are seen not only for classic eNOS agonists such as bradykinin, but also for estradiol, indicating a novel non-genomic role for estrogen in eNOS activation. eNOS targeting to the membrane is labile, and is subject to receptorregulated Ca 2+-dependent reversible translocation, providing another point for regulation of NO-dependent signaling in the vascular endothelium.

Interaction between Caveolin-1 and the Reductase Domain of Endothelial Nitric-oxide Synthase. CONSEQUENCES FOR CATALYSIS

Journal of Biological Chemistry, 1998

Endothelial nitric-oxide synthase (eNOS) is targeted to caveoli through interaction with caveolin-1 (cav-1). cav-1 binding to a consensus site in the eNOS oxygenase domain is proposed to antagonize calmodulin (CaM) binding and thereby inhibit eNOS nitric oxide (NO) synthesis. To study the mechanism, we examined how cav-1 scaffolding domain peptide (amino acids 82-101; cav-1P) would affect NO synthesis, NADPH oxidation, cytochrome c reduction, and ferricyanide reduction by fulllength eNOS or its isolated oxygenase and reductase domains.

Trafficking of Endothelial Nitric-oxide Synthase in Living Cells

Journal of Biological Chemistry, 1999

To examine endothelial nitric-oxide synthase (eNOS) trafficking in living endothelial cells, the eNOS-deficient endothelial cell line ECV304 was stably transfected with an eNOS-green fluorescent protein (GFP) fusion construct and characterized by functional, biochemical, and microscopic analysis. eNOS-GFP was colocalized with Golgi and plasma membrane markers and produced NO in response to agonist challenge. Localization in the plasma membrane was dependent on the palmitoylation state, since the palmitoylation mutant of eNOS (C15S/C26S eNOS-GFP) was excluded from the plasma membrane and was concentrated in a diffuse perinuclear pattern. Fluorescence recovery after photobleaching (FRAP) revealed eNOS-GFP in the perinuclear region moving 3 times faster than the plasmalemmal pool, suggesting that protein-lipid or proteinprotein interactions are different in these two cellular domains. FRAP of the palmitoylation mutant was two times faster than that of wild-type eNOS-GFP, indicating that palmitoylation was influencing the rate of trafficking. Interestingly, FRAP of C15S/C26S eNOS-GFP but not wild-type eNOS-GFP fit a model of protein diffusion in a lipid bilayer. These data suggest that the regulation of eNOS trafficking within the plasma membrane and Golgi are probably different mechanisms and not due to simple diffusion of the protein in a lipid bilayer.

Dissecting the Interaction between Nitric Oxide Synthase (NOS) and Caveolin. FUNCTIONAL SIGNIFICANCE OF THE NOS CAVEOLIN BINDING DOMAIN IN VIVO

Journal of Biological Chemistry, 1997

Endothelial nitric oxide synthase (eNOS) is a dually acylated peripheral membrane protein that targets to the Golgi region and caveolae of endothelial cells. Recent evidence has shown that eNOS can co-precipitate with caveolin-1, the resident coat protein of caveolae, suggesting a direct interaction between these two proteins. To test this idea, we examined the interactions of eNOS with caveolin-1 in vitro and in vivo. Incubation of endothelial cell lysates or purified eNOS with glutathione S-transferase (GST)-caveolin-1 resulted in the direct interaction of the two proteins. Utilizing a series of GSTcaveolin-1 deletion mutants, we identified two cytoplasmic domains of caveolin-1 that interact with eNOS, the scaffolding domain (amino acids 61-101) and to a lesser extent the C-terminal tail (amino acids 135-178). Incubation of pure eNOS with peptides derived from the scaffolding domains of caveolin-1 and -3, but not the analogous regions from caveolin-2, resulted in inhibition of eNOS, inducible NOS (iNOS), and neuronal NOS (nNOS) activities. These results suggest a common mechanism and site of inhibition. Utilizing GST-eNOS fusions, the site of caveolin binding was localized between amino acids 310 and 570. Site-directed mutagenesis of the predicted caveolin binding motif within eNOS

Translocation of Endothelial Nitric-Oxide Synthase Involves a Ternary Complex with Caveolin-1 and NOSTRIN

Molecular Biology of The Cell, 2006

Recently, we characterized a novel endothelial NO synthase (eNOS) interacting protein, NOSTRIN, which decreases eNOS activity upon overexpression and induces translocation of eNOS away from the plasma membrane. Here, we show that NOSTRIN directly binds to caveolin-1, a well-established inhibitor of eNOS. Since this interaction occurs between the N-terminus of caveolin (positions 1-61) and the central domain of NOSTRIN (positions 323-434), it allows for independent binding of each of the two proteins to eNOS. Consistently, we were able to demonstrate the existence of a ternary complex of NOSTRIN, eNOS, and caveolin-1 in CHO-eNOS cells. In HUVECs, the ternary complex assembles at the plasma membrane upon confluence or thrombin stimulation. In CHO-eNOS cells, NOSTRIN-mediated translocation of eNOS involves caveolin in a process most likely representing caveolar trafficking. Accordingly, trafficking of NOSTRIN/eNOS/caveolin is affected by altering the state of actin filaments or cholesterol levels in the plasma membrane. During caveolar trafficking, NOSTRIN functions as an adaptor to recruit mediators such as dynamin-2 essential for membrane fission. We propose that a ternary complex between NOSTRIN, caveolin-1 and eNOS mediates translocation of endothelial NO synthase, with important implications for the activity and availability of eNOS in the cell.