A Modified Flower Pollination Algorithm for Global Optimization (original) (raw)

A Hybrid Flower Pollination Algorithm for Engineering Optimization Problems

International Journal of Computer Applications, 2016

Flower pollination algorithm (FP) is a new nature-inspired algorithm, based on the characteristics of flowering plants. Combining with the features of flower pollination algorithm, an improved simulated annealing algorithm is proposed in this paper (FPSA). It can improve the speed of annealing. The initial state of simulated annealing and new solutions are generated by flower pollination. Therefore, it has the advantage of high quality and efficiency. The method combines the standard flower pollination algorithm (FP) with simulated annealing to enhance the search performance and speeds up the global convergence rate. Structural engineering optimization problems are presented to demonstrate the effectiveness and robustness of the proposed algorithm. The experimental results showed that the accuracy of finding the best solution and convergence speed performance of the proposed algorithm is competitive to those achieved by the existing algorithms.

A Review of the Applications of Bio-Inspired Flower Pollination Algorithm

The Flower Pollination Algorithm (FPA) is a novel bio-inspired optimization algorithm that mimics the real life processes of the flower pollination. In this paper, we review the applications of the Single Flower Pollination Algorithm (SFPA), Multi-objective Flower Pollination Algorithm an extension of the SFPA and the Hybrid of FPA with other bio-inspired algorithms. The review has shown that there is still a room for the extension of the FPA to Binary FPA. The review presented in this paper can inspire researchers in the bio-inspired algorithms research community to further improve the effectiveness of the PFA as well as to apply the algorithm in other domains for solving real life, complex and nonlinear optimization problems in engineering and industry. Further research and open questions were highlighted in the paper.

A Novel Flower Pollination Algorithm based on Genetic Algorithm Operators

Proceedings of The 9th EUROSIM Congress on Modelling and Simulation, EUROSIM 2016, The 57th SIMS Conference on Simulation and Modelling SIMS 2016

The Flower Pollination Algorithm (FPA) is a new natural bio-inspired optimization algorithm that mimics the real-life processes of the flower pollination. Thus, the latter has a quick convergence, but its population diversity and convergence precision can be limited in some applications. In order to improve its intensification (exploitation) and diversification (exploration) abilities, we have introduced a simple modification in its general structure. More precisely, we have added both Crossover and Mutation Genetic Algorithm (GA) operators respectively, just after calculating the new candidate solutions and the greedy selection operation in its basic structure. The proposed method, called FPA-GA has been tested on all the CEC2005 contest test instances. Experimental results show that FPA-GA is very competitive.

Flower Pollination Algorithm for Global Optimization

Unconventional Computation and Natural Computation, 2012

Flower pollination is an intriguing process in the natural world. Its evolutionary characteristics can be used to design new optimization algorithms. In this paper, we propose a new algorithm, namely, flower pollination algorithm, inspired by the pollination process of flowers. We first use ten test functions to validate the new algorithm, and compare its performance with genetic algorithms and particle swarm optimization. Our simulation results show the flower algorithm is more efficient than both GA and PSO. We also use the flower algorithm to solve a nonlinear design benchmark, which shows the convergence rate is almost exponential.

A Comparative Study of Flower Pollination Algorithm and Bat Algorithm on Continuous Optimization Problems

Nature is a rich source of inspiration, which has inspired many researchers in many ways. Nowadays, new algorithms have been developed by the inspiration from nature. The flower pollination algorithm is based on the characteristics of pollination process of flowers plants. Pollination is a natural biological process of mating in plants. In flowers, pollen is carried to stigma through some mechanisms that confirm a proper balance in the genetic creations of the species. Another nature inspired algorithm — the Bat algorithm is based on the echolocation behavior of bats. In this paper, the Flower pollination algorithm is compared with the basic Bat algorithm. We have tested these two algorithms on both unimodal and multimodal, low and high dimensional continuous functions. Simulation results suggest that the Flower pollination algorithm can perform much better than the Bat algorithm on the continuous optimization problems.

Optimization Method Based on the Synthesis of Clonal Selection and Annealing Simulation Algorithms

Radio Electronics, Computer Science, Control, 2019

Context. The problem of increasing the efficiency of optimization methods by synthesizing metaheuristics is considered. The object of the research is the process of finding a solution to optimization problems. Objective. The goal of the work is to increase the efficiency of searching for a quasi-optimal solution at the expense of a metaheuristic method based on the synthesis of clonal selection and annealing simulation algorithms. Method. The proposed optimization method improves the clonal selection algorithm by dynamically changing based on the annealing simulation algorithm of the mutation step, the mutation probability, the number of potential solutions to be replaced. This reduces the risk of hitting the local optimum through extensive exploration of the search space at the initial iterations and guarantees convergence due to the focus of the search at the final iterations. The proposed optimization method makes it possible to find a conditional minimum through a dynamic penalty function, the value of which increases with increasing iteration number. The proposed optimization method admits non-binary potential solutions in the mutation operator by using the standard normal distribution instead of the uniform distribution. Results. The proposed optimization method was programmatically implemented using the CUDA parallel processing technology and studied for the problem of finding the conditional minimum of a function, the optimal separation problem of a discrete set, the traveling salesman problem, the backpack problem on their corresponding problem-oriented databases. The results obtained allowed to investigate the dependence of the parameter values on the probability of mutation. Conclusions. The conducted experiments have confirmed the performance of the proposed method and allow us to recommend it for use in practice in solving optimization problems. Prospects for further research are to create intelligent parallel and distributed computer systems for general and special purposes, which use the proposed method for problems of numerical and combinatorial optimization, machine learning and pattern recognition, forecast.

Plant intelligence based metaheuristic optimization algorithms

Artificial Intelligence Review, 2016

Classical optimization algorithms are insufficient in large scale combinatorial problems and in nonlinear problems. Hence, metaheuristic optimization algorithms have been proposed. General purpose metaheuristic methods are evaluated in nine different groups: biology-based, physics-based, social-based, music-based, chemical-based, sportbased, mathematics-based, swarm-based, and hybrid methods which are combinations of these. Studies on plants in recent years have showed that plants exhibit intelligent behaviors. Accordingly, it is thought that plants have nervous system. In this work, all of the algorithms and applications about plant intelligence have been firstly collected and searched. Information is given about plant intelligence algorithms such as

Metaheuristic Optimization: Nature-Inspired Algorithms Swarm and Computational Intelligence, Theory and Applications

Studies in Computational Intelligence, 2021

This book exemplifies how algorithms are developed by mimicking nature. Classical techniques for solving day-to-day problems is time-consuming and cannot address complex problems. Metaheuristic algorithms are nature-inspired optimization techniques for solving real-life complex problems. This book emphasizes the social behaviour of insects, animals and other natural entities, in terms of converging power and benefits. Major nature-inspired algorithms discussed in this book include the bee colony algorithm, ant colony algorithm, grey wolf optimization algorithm, whale optimization algorithm, firefly algorithm, bat algorithm, ant lion optimization algorithm, grasshopper optimization algorithm, butterfly optimization algorithm and others. The algorithms have been arranged in chapters to help readers gain better insight into nature-inspired systems and swarm intelligence. All the MATLAB codes have been provided in the appendices of the book to enable readers practice how to solve examples included in all sections. This book is for experts in Engineering and Applied Sciences, Natural and Formal Sciences, Economics, Humanities and Social Sciences.

Metaheuristic algorithms in optimization and its application: a review

JAREE (Journal on Advanced Research in Electrical Engineering), 2022

Metaheuristic algorithms are computational intelligence paradigms especially used for solving different optimization issues. Metaheuristics examine a collection of solutions otherwise really be wide to be thoroughly addressed or discussed in any other way. Metaheuristics can be applied to a wide range of problems because they make accurate predictions in any optimization situation. Natural processes such as the fact of evolution in Natural selection behavioral genetics, ant behaviors in genetics, swarm behaviors of certain animals, annealing in metallurgy, and others motivate metaheuristics algorithms. The big cluster search algorithm is by far the most commonly used metaheuristic algorithm. The principle behind this algorithm is that it begins with an optimal state and then uses heuristic methods from the community search algorithm to try to refine it. Many metaheuristic algorithms in diverse environments and areas are examined, compared, and described in this article. Such as Genetic Algorithm (GA), ant Colony Optimization Algorithm (ACO), Simulated Annealing (SA), Particle Swarm Optimization (PSO) algorithm, Differential Evolution (DE) algorithm, etc. Finally, show the results of each algorithm in various environments were addressed.