Fibroblast Growth Factor-2 (FGF-2) Induces Vascular Endothelial Growth Factor (VEGF) Expression in the Endothelial Cells of Forming Capillaries: An Autocrine Mechanism Contributing to Angiogenesis (original) (raw)
Related papers
Laboratory Investigation, 2001
Angiogenesis is a key component of human cancer progression and metastasis. In an effort to recapitulate early events in tumor-induced angiogenesis, we have employed a subcutaneous Matrigel implant model using immunodeficient mice as hosts. Matrigel-containing fibroblast growth factor 2 (FGF-2; 1.2 g/ml) induced stromal cell infiltration into the Matrigel/skin interface within 4 days and maximal neovascularization at 7 days. Cells staining positive for the endothelial cell marker, platelet-endothelial cell adhesion molecule 1 (PECAM-1), were present in neovessels and in isolated cells within the Matrigel matrix. Immunohistochemical analysis revealed high levels of vascular endothelial growth factor (VEGF) deposited in the stromal interface present only in the FGF-2-containing but not in control Matrigel implants. VEGF expression was confirmed with in situ hybridization. High VEGF mRNA levels were observed in the infiltrating stromal cells but not in endothelial or endothelial precursors as defined by PECAM-1 staining. In vitro analysis of FGF-2-treated embryonic fibroblasts, Balb/c 3T3 cells, showed an induction of VEGF transcription, mRNA synthesis, and protein secretion as defined by transcriptional reporter, Northern blot, and ELISA assays. The FGF-2-induced VEGF expression was not dependent on select matrix adherence or signaling components because VEGF mRNA expression induced by FGF-2 was equally activated on serum, basement membrane, and fibronectin matrix substrates. Systemic application of anti-VEGF antibodies significantly repressed FGF-2-induced angiogenesis over control antibody by 88% (p Ͻ 0.001). These data support an FGF-2 angiogenic model that is dependent on endothelial cell activation, stromal cell infiltration, and VEGF expression by the infiltrating stromal cell population.
Biochemical and Biophysical Research Communications, 1992
Vascular endothelial growth factor (VEGF), also known as vascular permeability factor or vasculotropin, is a recently characterized endothelial-specific mitogen which is angiogenic in vivo. Here we demonstrate that VEGF is angio !! enic in vitro: when added to microvascular endothelial cells grown on the surface o threedimensional collagen form capillary-like els, VEGF induces the cells to invade the underlying matrix and to tu fi ules, with an optimal effect at When compared to basic fibroblast growth factor ap roximately 2.2nM (lOOng/ml). (FGF) :: at equimolar (OSnM) concentrations, VEGF was about half as potent. The most striking effect was seen in combination with bFGF: when added simultaneously, VEGF and bFGF induced an in vitro angiogenic response which was far greater than additive, and which occurred with greater rapidity than the response to either cytokine alone. These results demonstrate that like bFGF, VEGF induces an angiogenic response via a direct effect on endothelial cells, and that by acting in concert, these two cytokines have a potent synergistic effect on the induction of angiogenesis in vitro. We suggest that the synergism between VEGF and bFGF plays an important role in the control of angiogenesis in vivo. o 1992 Academic press, I,,~.
2010
Angiogenic therapy is considered to be a promising tool for treatment of ischemic diseases. Many in vivo and in vitro assays have been developed to identify potential proangiogenic drugs and to investigate their mode of action. However, until now no validated system exists that would allow quantitation of angiogenesis in vitro in only one assay. Here, a previously established all-in-one in vitro assay based on staging of the angiogenic cascade was validated by quantitation of the effects of the known proangiogenic factors VEGF-A and FGF-2. Both growth factors were applied separately or in combination to human endothelial cell cultures derived from the heart and the foreskin, and angiogenesis was quantitated over 30 days of culture. Additionally, gene expression of VEGFR-1, VEGFR-2 and FGFR-1 at 3, 10, 20 or 40 days of cultivation was quantitated by RT-qPCR. In both cultures, VEGF-A as well as FGF-2 induced a run through all defined stages of angiogenesis in vitro. Application of VEGF-A only led to formation of irregular globular endothelial structures, while FGF-2 resulted in development of regular capillary-like structures. Quantitation of the angiogenic effects of VEGF-A and transcripts of VEGFR-1 and VEGFR-2 showed that a high VEGFR-1/VEGFR-2 ratio evoked deceleration of angiogenesis.
Molecular Mechanisms of VEGF-Induced Angiogenesis
Angiogenesis is a complex process that occurs in a series of inter-related steps, and involves the release of pro-angiogenic factors. One of the most important angiogenic factors is vascular endothelial growth factor (VEGF). VEGF regulates both vascular endothelial cell migration, proliferation and permeability, and functions as an anti-apoptotic factor for newly formed blood vessels. The biological effects of VEGF are mediated by two receptors, VEGFR-1 and VEGFR-2, whose expression is mostly limited to the vascular endothelium. Angiogenesis, the role of VEGF in angiogenesis and the signal cascade regulating VEGF-induced angiogenesis are discussed.
The Journal of Pathology, 1999
A close relationship exists between angiogenesis and the formation of vascular lesions. The development of the vascular system in the chick embryo chorioallantoic membrane (CAM) may thus represent a model to study the effects of the deregulation of endothelial cell behaviour. Alterations of the developing vascular tree of the CAM were observed after exposure to murine aortic endothelial (MAE) cells overexpressing human fibroblast growth factor-2 (FGF2) cDNA (pZipFGF2 MAE cells), or to their conditioned medium (CM).
Vascular Endothelial Growth Factor: Basic Science and Clinical Progress
Endocrine Reviews, 2004
Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen in vitro and an angiogenic inducer in a variety of in vivo models. Hypoxia has been shown to be a major inducer of VEGF gene transcription. The tyrosine kinases Flt-1 (VEGFR-1) and Flk-1/KDR (VEGFR-2) are highaffinity VEGF receptors. The role of VEGF in developmental angiogenesis is emphasized by the finding that loss of a single VEGF allele results in defective vascularization and early embryonic lethality. VEGF is critical also for reproductive and bone angiogenesis. Substantial evidence also implicates VEGF as a mediator of pathological angiogenesis. In situ hybridization studies demonstrate expression of VEGF mRNA in the majority of human tumors. Anti-VEGF monoclonal antibodies and other VEGF inhibitors block the growth of several tumor cell lines in nude mice. Clinical trials with various VEGF inhibitors in a variety of malignancies are ongoing. Very recently, an anti-VEGF monoclonal antibody (bevacizumab; Avastin) has been approved by the Food and Drug Administration as a first-line treatment for metastatic colorectal cancer in combination with chemotherapy. Furthermore, VEGF is implicated in intraocular neovascularization associated with diabetic retinopathy and age-related macular degeneration. (Endocrine Reviews 25: 581-611, 2004) I. Introduction II. Historical Note on Angiogenic Factors III. Identification of VEGF IV. Activities of VEGF A. Mitogenesis, angiogenesis, and endothelial survival B. Effects of VEGF on bone marrow cells and hematopoiesis C. Enhancement of vascular permeability and hemodynamic effects V. VEGF Isoforms VI. Regulation of VEGF Gene Expression A. Oxygen tension B. Growth factors, hormones, and oncogenes VII. VEGFRs A. VEGFR-1 (Flt-1) B. VEGFR-2 (KDR, human; Flk-1, mouse) C. Neuropilin (NP)1 and NP2 VIII. Role of VEGF in Physiological Angiogenesis A. Embryonic and postnatal development B. Skeletal growth and endochondral bone formation C. Angiogenesis in endocrine glands IX. Role of VEGF in Pathological Conditions A. Solid tumors B. Hematological malignancies C. Intraocular neovascular syndromes D. Inflammatory disorders and brain edema E. Pathology of the female reproductive tract X. VEGF and Therapeutic Angiogenesis XI. Perspectives
Cancer research, 2001
Fibroblast growth factor-2 (FGF2) is a pleiotropic heparin-binding growth factor endowed with a potent angiogenic activity in vitro and in vivo. To investigate the impact of the modulation of FGF2 expression on the neovascularization at different stages of tumor growth, we generated stable transfectants (Tet-FGF2) from the human endometrial adenocarcinoma HEC-1-B cell line in which FGF2 expression is under the control of the tetracycline-responsive promoter (Tet-off system). After transfection, independent clones were obtained in which FGF2 mRNA and protein were up-regulated compared with parental cells. Also, the conditioned medium of Tet-FGF2 transfectants caused proliferation, urokinase-type plasminogen activator up-regulation, migration, and sprouting of cultured endothelial cells. A 3-day treatment of Tet-FGF2 cell cultures with tetracycline abolished FGF2 overexpression and the biological activity of the conditioned medium without affecting their proliferative capacity. Tet-FG...
Journal of cellular …, 2001
Angiogenesis, the formation of new capillary blood vessels, occurs almost exclusively in the microcirculation. This process is controlled by the interaction between factors with positive and negative regulatory activity. In this study, we have compared the effect of two well described positive regulators, vascular endothelial growth factor (VEGF) and basic ®broblast growth factor (FGF-2) on bovine adrenal cortex-derived microvascular endothelial (BME) and bovine aortic endothelial (BAE) cells. The parameters we assessed included (a) cellular reorganization and lumen formation following exposure of the apical cell surface to a three-dimensional collagen gel; (b) organization of the actin cytoskeleton; (c) expression of thrombospondin-1 (TSP-1), an endogenous negative regulator of angiogenesis; and (d) extracellular proteolytic activity mediated by the plasminogen activator (PA)/plasmin system. We found that (a) collagen gel overlay induces rapid reorganization and lumen formation in BME but not BAE cells; (b) FGF-2 but not VEGF induced dramatic reorganization of actin micro®laments in BME cells, with neither cytokine affecting BAE cells; (c) FGF-2 decreased TSP-1 protein and mRNA expression in BME cells, an effect which was speci®c for FGF-2 and BME cells, since TSP-1 protein levels were unaffected by VEGF in BME cells, or by FGF-2 or VEGF in BAE cells; (d) FGF-2 induced urokinase-type PA (uPA) in BME and BAE cells, while VEGF induced uPA and tissue-type PA in BME cells with no effect on BAE cells. Taken together, these ®ndings reveal endothelial cell-type speci®c responses to FGF-2 and VEGF, and point to the greater speci®city of these cytokines for endothelial cells of the microvasculature than for large vessel (aortic) endothelial cells. Furthermore, when viewed in the context of our previous observation on the synergistic interaction between VEGF and FGF-2, our present ®ndings provide evidence for complementary mechanisms which, when acting in concert, might account for the synergistic effect.