Measles virus receptors and tropism (original) (raw)
Related papers
Measles virus: cellular receptors, tropism and pathogenesis
Journal of General Virology, 2006
Measles virus (MV), a member of the genus Morbillivirus in the family Paramyxoviridae, is an enveloped virus with a non-segmented, negative-strand RNA genome. It has two envelope glycoproteins, the haemagglutinin (H) and fusion proteins, which are responsible for attachment and membrane fusion, respectively. Human signalling lymphocyte activation molecule (SLAM; also called CD150), a membrane glycoprotein of the immunoglobulin superfamily, acts as a cellular receptor for MV. SLAM is expressed on immature thymocytes, activated lymphocytes, macrophages and dendritic cells and regulates production of interleukin (IL)-4 and IL-13 by CD4 + T cells, as well as production of IL-12, tumour necrosis factor alpha and nitric oxide by macrophages. The distribution of SLAM is in accord with the lymphotropism and immunosuppressive nature of MV. Canine distemper virus and Rinderpest virus, other members of the genus Morbillivirus, also use canine and bovine SLAM as receptors, respectively. Laboratory-adapted MV strains may use the ubiquitously expressed CD46, a complement-regulatory molecule, as an alternative receptor through amino acid substitutions in the H protein. Furthermore, MV can infect SLAM " cells, albeit inefficiently, via the SLAM-and CD46-independent pathway, which may account for MV infection of epithelial, endothelial and neuronal cells in vivo. MV infection, however, is not determined entirely by the H protein-receptor interaction, and other MV proteins can also contribute to its efficient growth by facilitating virus replication at post-entry steps. Identification of SLAM as the principal receptor for MV has provided us with an important clue for better understanding of MV tropism and pathogenesis.
Virology, 2001
Natural isolates of measles virus readily infect several lymphocyte cell lines. These viruses appear to use a receptor other than CD46, the molecule to which most laboratory strains of virus bind. Methods used to identify and characterize this lymphocyte receptor for measles virus are described in this study. A binding assay with a soluble form of measles virus H protein demonstrated that B-cell lines, activated with Epstein-Barr virus, or T cells, transformed with human T-cell leukemia virus, exhibit this receptor on their cell surfaces. On the other hand, resting lymphocytes, monocytes, or immature leukocytes either failed to express or possessed reduced levels of this receptor. A cDNA library derived from B95-8 marmoset B-cell lines was used to identify this receptor through expression cloning. This molecule was shown to be CDw150, which is also known as the signaling lymphocytic activation molecule (SLAM). When the lymphocyte receptor was expressed in Chinese hamster ovary (CHOP) or human embryonic kidney (293T) cells, these cells became susceptible to lymphotropic as well as laboratory strains of measles virus. Binding assays confirmed that either lymphotropic or laboratory strains of measles virus could adhere to human or marmoset CDw150, but interaction with the mouse homolog was weak. These infections were independent of the presence of CD46 on the host cell surface. Interaction of measles virus with CDw150(SLAM) could explain the immunosuppressive properties of this virus.
Efficiency of Measles Virus Entry and Dissemination through Different Receptors
Journal of Virology, 2002
The efficiency with which different measles virus (MV) strains enter cells through the immune cell-specific protein SLAM (CD150) or other receptors, including the ubiquitous protein CD46, may influence their pathogenicity. We compared the cell entry efficiency of recombinant MV differing only in their attachment protein hemagglutinin (H). We constructed these viruses with an additional gene expressing an autofluorescent reporter protein to allow direct detection of every infected cell. A virus with a wild-type H protein entered cells through SLAM two to three times more efficiently than a virus with the H protein of the attenuated strain Edmonston, whereas cell entry efficiency through CD46 was lower. However, these subtle differences were amplified at the cell fusion stage because the wild-type H protein failed to fuse CD46-expressing cells. We also proved formally that a mutation in H protein residue 481 (asparagine to tyrosine) results in improved CD46-specific entry. To define the selective pressure exerted on that codon, we monitored its evolution in different H protein backgrounds and found that several passages in CD46-expressing Vero cells were necessary to shift it in the majority of the MV RNA. To verify the importance of these observations for human infections, we examined MV entry into peripheral blood mononuclear cells and observed that viruses with asparagine 481 H proteins infect these cells more efficiently.
Journal of Virology, 2008
Measles is one of the most contagious human infectious diseases and remains a major cause of childhood morbidity and mortality worldwide. The signaling lymphocyte activation molecule (SLAM), also called CD150, is a cellular receptor for measles virus (MV), presumably accounting for its tropism for immune cells and its immunosuppressive properties. On the other hand, pathological studies have shown that MV also infects epithelial cells at a later stage of infection, although its mechanism has so far been unknown. In this study, we show that wild-type MV can infect and produce syncytia in human polarized epithelial cell lines independently of SLAM and CD46 (a receptor for the vaccine strains of MV). Progeny viral particles are released exclusively from the apical surface of these polarized epithelial cell lines. We have also identified amino acid residues on the MV attachment protein that are likely to interact with a putative receptor on epithelial cells. All of these residues have aromatic side chains and may form a receptor-binding pocket located in a different position from the putative SLAM-and CD46-binding sites on the MV attachment protein. Thus, our results indicate that MV has an intrinsic ability to infect both polarized epithelial and immune cells by using distinctive receptorbinding sites on the attachment protein corresponding to each of their respective receptors. The ability of MV to infect polarized epithelial cells and its exclusive release from the apical surface may facilitate its efficient transmission via aerosol droplets, resulting in its highly contagious nature.
Clinical Isolates of Measles Virus Use CD46 as a Cellular Receptor
Journal of Virology, 2000
Halle, use the complement regulatory protein CD46 as a cell surface receptor. The receptor usage of clinical isolates of MV, however, remains unclear. Receptor usage by primary patient isolates of MV was compared to isolates that had been passaged on a variety of tissue culture cell lines. All of the isolates could infect cells in a CD46-dependent manner, but their tropism was restricted according to cell type (e.g., lymphocytes versus fibroblasts). The results indicate that patient isolates that have not been adapted to tissue culture cell lines use CD46 as a receptor. In addition, passaging primary MV patient isolates in B95-8 cells selected variants that had alternate receptor usage compared to the original isolate. Thus, changes in receptor usage by MV are dependent upon the cell type used for isolation. Furthermore, our results confirm the relevance of the CD46 receptor to natural measles infection.
Journal of Virology, 2007
The human signaling lymphocyte activation molecule (SLAM, also called CD150), a regulator of antigendriven T-cell responses and macrophage functions, acts as a cellular receptor for measles virus (MV), and its V domain is necessary and sufficient for receptor function. We report here the generation of SLAM knockin mice in which the V domain of mouse SLAM was replaced by that of human SLAM. The chimeric SLAM had an expected distribution and normal function in the knockin mice. Splenocytes from the SLAM knockin mice permitted the in vitro growth of a virulent MV strain but not that of the Edmonston vaccine strain.
Mapping of the Primary Binding Site of Measles Virus to Its Receptor CD46
Journal of Biological Chemistry, 1997
The measles virus (MV) hemagglutinin binds to the complement control protein (CCP) CD46 primarily through the two external modules, CCP-I and -II. To define the residues involved in binding, 40 amino acids predicted to be solvent-exposed on the CCP-I-II module surface were changed to either alanine or serine. Altered proteins were expressed on the cell surface, and their abilities to bind purified MV particles, a soluble form of hemagglutinin (sH) and nine CD46-specific antibodies competing to different levels with sH attachment, were measured. All proteins retained, at least in part, MV and sH binding, but some completely lost binding to certain antibodies. Amino acids essential for binding of antibodies weakly or moderately competing with sH attachment are situated in the membrane-distal tip of CCP-I, whereas residues involved in binding of strongly sH competing antibodies cluster in the center of CCP-I (Arg-25, Asp-27) or in CCP-II (Arg-69, Asp-70). Both clusters face the same side of CCP-I-II and map close to amino acid exchanges impairing sH binding (E11A, R29A, P39A, and D70A) or MV binding (D70A and E84A) and to a six-amino acid loop, previously shown to be necessary for sH binding.
Differential permissivity to measles virus infection of human and CD46-transgenic murine lymphocytes
Journal of General Virology, 2001
Analysis of measles virus (MV) pathogenesis requires the development of an adequate small animal model of MV infection. In this study, permissivity to MV infection was compared in human and transgenic murine T lymphocytes, expressing different levels of the human MV receptor, CD46. Whereas MV binding and entry correlated with CD46 expression, higher levels of MV replication were always observed in human T lymphocytes. This suggests the existence of intracellular factors, acting posterior to virus entry, that could limit MV replication in murine lymphocytes and should be considered when creating new animal models of MV infection.