Recent Tricks in Solid-Phase Peptide Synthesis (original) (raw)

Fundamentals of Modern Peptide Synthesis

ChemInform, 2006

The purpose of this article is to delineate strategic considerations and provide practical procedures to enable non-experts to synthesize peptides with a reasonable chance of success. This article is not encyclopedic but rather devoted to the Fmoc/tBu approach of solid phase peptide synthesis (SPPS), which is now the most commonly used methodology for the production of peptides. The principles of SPPS with a review of linkers and supports currently employed are presented. Basic concepts for the different steps of SPPS such as anchoring, deprotection, coupling reaction and cleavage are all discussed along with the possible problem of aggregation and side-reactions. Essential protocols for the synthesis of fully deprotected peptides are presented including resin handling, coupling, capping, Fmoc-deprotection, final cleavage and disulfide bridge formation. Index Entries: Solid phase peptide synthesis (SPPS); resin; Fmoc SPPS; coupling reagents; protecting groups; anchoring; side reaction.

An Improved Procedure for N- to C-Directed (Inverse) Solid-Phase Peptide Synthesis

Journal of Combinatorial Chemistry, 2000

A method for solid-phase peptide synthesis in the N-to C-direction that delivers good coupling yields and a low degree of epimerization is reported. The optimized method involves the coupling, without preactivation, of the resin-bound C-terminal amino acid with excess amounts of amino acid tri-tert-butoxysilyl (Sil) esters, using HATU as coupling reagent and 2,4,6-trimethylpyridine (TMP, collidine) as a base. For the amino acids investigated, the degree of epimerization was typically 5%, except for Ser(t-Bu) which was more easily epimerized (ca. 20%). Five tripeptides (AA 1 -AA 2 -AA 3 ) with different properties were used as representative model peptides in the development of the synthetic method: Asp-Leu-Glu, Leu-Ala-Phe, Glu-Asp-Val, Asp-Ser-Ile, and Asp-D-Glu-Leu. The study used different combinations of HATU and TBTU as activating agents, N,N-diisopropylethylamine (DIEA) and TMP as bases, DMF and dichloromethane as solvents, and cupric chloride as an epimerization suppressant. The epimerization of AA 2 in the coupling of AA 3 was further reduced in the presence of cupric chloride. However, the use of this reagent also resulted in a decrease in loading onto the resin and significant cleavage between AA 1 and AA 2 . Experiments indicated that the observed suppressing effect of cupric chloride on epimerization in the present system merely seemed to be a result of a base-induced cleavage of the oxazolone system, the key intermediate in the epimerization process. Consequently, the cleavages were most pronounced in slow couplings. An improved synthesis of fully characterized amino acid tri-tert-butoxysilyl (Sil) ester hydrochloride building blocks is presented. The amino acid Sil esters were found to be stable as hydrochlorides but not as free bases. Although only a few peptides have been used in this study, we believe that the facile procedure devised herein should provide an attractive alternative for the solid-phase synthesis of short (six residues or less) C-terminally modified peptides, e.g., in library format.

Backbone Amide Linker (BAL) Strategy for Solid-Phase Synthesis of C-Terminal-Modified and Cyclic Peptides1,2,3

Journal of the American Chemical Society, 1998

Peptide targets for synthesis are often desired with C-terminal end groups other than the more usual acid and amide functionalities. Relatively few routes exist for synthesis of C-terminal-modified peptidessincluding cyclic peptidessby either solution or solid-phase methods, and known routes are often limited in terms of ease and generality. We describe here a novel Backbone Amide Linker (BAL) approach, whereby the growing peptide is anchored through a backbone nitrogen, thus allowing considerable flexibility in management of the termini. Initial efforts on BAL have adapted the chemistry of the tris(alkoxy)benzylamide system exploited previously with PAL anchors. Aldehyde precursors to PAL, e.g. 5-(4-formyl-3,5-dimethoxyphenoxy)valeric acid, were reductively coupled to the R-amine of the prospective C-terminal amino acid, which was blocked as a tert-butyl, allyl, or methyl ester, or to the appropriately protected C-terminal-modified amino acid derivative. These reductive aminations were carried out either in solution or on the solid phase, and occurred without racemization. The secondary amine intermediates resulting from solution amination were converted to the 9-fluorenylmethoxycarbonyl (Fmoc)-protected preformed handle derivatives, which were then attached to poly-(ethylene glycol)-polystyrene (PEG-PS) graft or copoly(styrene-1% divinylbenzene) (PS) supports and used to assemble peptides by standard Fmoc solid-phase chemistry. Alternatively, BAL anchors formed by onresin reductive amination were applied directly. Conditions were optimized to achieve near-quantitative acylation at the difficult step to introduce the penultimate residue, and a side reaction involving diketopiperazine formation under some circumstances was prevented by a modified protocol for N R-protection of the second residue/ introduction of the third residue. Examples are provided for the syntheses in high yields and purities of representative peptide acids, alcohols, N,N-dialkylamides, aldehydes, esters, and head-to-tail cyclic peptides. These methodologies avoid postsynthetic solution-phase transformations and are ripe for further extension.

Backbone Amide Linker (BAL) Strategy for Solid-Phase Synthesis of C-Terminal-Modified and Cyclic Peptides 1 , 2 , 3

Journal of the American Chemical Society, 1998

Peptide targets for synthesis are often desired with C-terminal end groups other than the more usual acid and amide functionalities. Relatively few routes exist for synthesis of C-terminal-modified peptidessincluding cyclic peptidessby either solution or solid-phase methods, and known routes are often limited in terms of ease and generality. We describe here a novel Backbone Amide Linker (BAL) approach, whereby the growing peptide is anchored through a backbone nitrogen, thus allowing considerable flexibility in management of the termini. Initial efforts on BAL have adapted the chemistry of the tris(alkoxy)benzylamide system exploited previously with PAL anchors. Aldehyde precursors to PAL, e.g. 5-(4-formyl-3,5-dimethoxyphenoxy)valeric acid, were reductively coupled to the R-amine of the prospective C-terminal amino acid, which was blocked as a tert-butyl, allyl, or methyl ester, or to the appropriately protected C-terminal-modified amino acid derivative. These reductive aminations were carried out either in solution or on the solid phase, and occurred without racemization. The secondary amine intermediates resulting from solution amination were converted to the 9-fluorenylmethoxycarbonyl (Fmoc)-protected preformed handle derivatives, which were then attached to poly-(ethylene glycol)-polystyrene (PEG-PS) graft or copoly(styrene-1% divinylbenzene) (PS) supports and used to assemble peptides by standard Fmoc solid-phase chemistry. Alternatively, BAL anchors formed by onresin reductive amination were applied directly. Conditions were optimized to achieve near-quantitative acylation at the difficult step to introduce the penultimate residue, and a side reaction involving diketopiperazine formation under some circumstances was prevented by a modified protocol for N R-protection of the second residue/ introduction of the third residue. Examples are provided for the syntheses in high yields and purities of representative peptide acids, alcohols, N,N-dialkylamides, aldehydes, esters, and head-to-tail cyclic peptides. These methodologies avoid postsynthetic solution-phase transformations and are ripe for further extension.

ChemInform Abstract: Solid Supports for the Synthesis of Peptides: From the First Resin Used to the Most Sophisticated in the Market

ChemInform, 2009

The most popular way to synthesize peptides is via the solidphase approach, mostly on a research scale, although progress is being made in large-scale production. The most evident example is Fuzeon, a commercial anti-HIV peptide, which is produced in multi-kilograms using a solid support for the synthesis of the fragments. Success in solid-phase peptide synthesis is heavily determined by the solid support. In this review we focus on the evolution of the solid support from the totally polystyrene-based resin used by Merrifield to the most sophisticated ones currently available on the market. These new resins offer access to previously inaccessible compounds as well as the possibility to be used in diverse applications but without losing stability. Moreover, these new supports are easy to handle. The final chapter of the review highlights the complex sequences that are difficult to achieve and the reasons for this. It then concludes by explaining the approaches that have been followed to synthesize such "difficult" peptides.

The Use of Aryl Hydrazide Linkers for the Solid-Phase Synthesis of Chemically Modified Peptides

ChemInform, 2007

Since Merrifield introduced the concept of solid phase synthesis in 1963 for the rapid preparation of peptides, a large variety of different supports and resin-linkers have been developed that improve the efficiency of peptide assembly and expand the myriad of synthetically feasible peptides. The aryl hydrazide is one of the most useful resin-linkers for the synthesis of chemically modified peptides. This linker is completely stable during Boc-and Fmoc-based solid phase synthesis and yet it can be cleaved under very mild oxidative conditions. The present article reviews the use of this valuable linker for the rapid and efficient synthesis of C-terminal modified peptides, head-to-tail cyclic peptides and lipidated peptides.

Solid-phase synthesis of C-terminal modified peptides

Biopolymers, 2003

In this paper, a straightforward and generic protocol is presented to label the C-terminus of a peptide with any desired moiety that is functionalized with a primary amine. Amine-functional molecules included are polymers (useful for hybrid polymers), long alkyl chains (used in peptide amphiphiles and stabilization of peptides), propargyl amine and azido propyl-amine (desirable for 'click' chemistry), dansyl amine (fluorescent labeling of peptides) and crown ethers (peptide switches/hybrids). In the first part of the procedure, the primary amine is attached to an aldehyde-functional resin via reductive amination. To the secondary amine that is produced, an amino acid sequence is coupled via a standard solid-phase peptide synthesis protocol. Since one procedure can be applied for any given amine-functional moiety, a robust method for C-terminal peptide labeling is obtained.

Solid‐phase synthesis of C‐terminally modified peptides

Journal of Peptide …, 2006

In this paper, a straightforward and generic protocol is presented to label the C-terminus of a peptide with any desired moiety that is functionalized with a primary amine. Amine-functional molecules included are polymers (useful for hybrid polymers), long alkyl chains (used in peptide amphiphiles and stabilization of peptides), propargyl amine and azido propyl-amine (desirable for 'click' chemistry), dansyl amine (fluorescent labeling of peptides) and crown ethers (peptide switches/hybrids). In the first part of the procedure, the primary amine is attached to an aldehyde-functional resin via reductive amination. To the secondary amine that is produced, an amino acid sequence is coupled via a standard solid-phase peptide synthesis protocol. Since one procedure can be applied for any given amine-functional moiety, a robust method for C-terminal peptide labeling is obtained.

BOP-OXy, BOP-OBt, and BOP-OAt: novel organophosphinic coupling reagents useful for solution and solid-phase peptide synthesis

Journal of Peptide Science, 2014

Stand-alone coupling reagents derived from bis(2-oxo-3-oxazolidinyl)phosphorodiamidic chloride show efficient performance in solution and SPPS. In particular, the Oxyma Pure (Luxembourg Biotech., Tel Aviv, Israel) derivative shows the additional advantage of being highly soluble in DMF and even fairly soluble in CH 3 CN, which can extend its use for the synthesis of complex peptides. These new stand-alone coupling reagents have the advantage of not bearing any counteranion such as PF 6 or BH 4 , whose presence can jeopardize the purification of final peptides prepared in solution.