Apoptosis Inhibitors for Heart Disease (original) (raw)
Related papers
Molecular regulation of cardiac hypertrophy
International Journal of Biochemistry & Cell Biology, 2008
Heart failure is one of the leading causes of mortality in the western world and encompasses a wide spectrum of cardiac pathologies. When the heart experiences extended periods of elevated workload, it undergoes hypertrophic enlargement in response to the increased demand. Cardiovascular disease, such as that caused by myocardial infarction, obesity or drug abuse promotes cardiac myocyte hypertrophy and subsequent heart failure. A number of signalling modulators in the vasculature milieu are known to regulate heart mass including those that influence gene expression, apoptosis, cytokine release and growth factor signalling. Recent evidence using genetic and cellular models of cardiac hypertrophy suggests that pathological hypertrophy can be prevented or reversed and has promoted an enormous drive in drug discovery research aiming to identify novel and specific regulators of hypertrophy. In this review we describe the molecular characteristics of cardiac hypertrophy such as the aberrant re-expression of the fetal gene program. We discuss the various molecular pathways responsible for the co-ordinated control of the hypertrophic program including: natriuretic peptides, the adrenergic system, adhesion and cytoskeletal proteins, IL-6 cytokine family, MEK-ERK1/2 signalling, histone acetylation, calcium-mediated modulation and the exciting recent discovery of the role of microRNAs in controlling cardiac hypertrophy. Characterisation of the signalling pathways leading to cardiac hypertrophy has led to a wealth of knowledge about this condition both physiological and pathological. The challenge will be translating this knowledge into potential pharmacological therapies for the treatment of cardiac pathologies.
Molecular targets and regulators of cardiac hypertrophy
Pharmacological Research, 2010
Cardiac hypertrophy is one of the main ways in which cardiomyocytes respond to mechanical and neurohormonal stimuli. It enables myocytes to increase their work output, which improves cardiac pump function. Although cardiac hypertrophy may initially represent an adaptive response of the myocardium, ultimately, it often progresses to ventricular dilatation and heart failure which is one of the leading causes of mortality in the western world. A number of signaling modulators that influence gene expression, apoptosis, cytokine release and growth factor signaling, etc. are known to regulate heart. By using genetic and cellular models of cardiac hypertrophy it has been proved that pathological hypertrophy can be prevented or reversed. This finding has promoted an enormous drive to identify novel and specific regulators of hypertrophy. In this review, we have discussed the various molecular signal transduction pathways and the regulators of hypertrophic response which includes calcineurin, cGMP, NFAT, natriuretic peptides, histone deacetylase, IL-6 cytokine family, Gq/G11 signaling, PI3K, MAPK pathways, Na/H exchanger, RAS, polypeptide growth factors, ANP, NO, TNF-␣, PPAR and JAK/STAT pathway, microRNA, Cardiac angiogenesis and gene mutations in adult heart. Augmented knowledge of these signaling pathways and their interactions may potentially be translated into pharmacological therapies for the treatment of various cardiac diseases that are adversely affected by hypertrophy. The purpose of this review is to provide the current knowledge about the molecular pathogenesis of cardiac hypertrophy, with special emphasis on novel researches and investigations.
2014
Cardiovascular disease is one of the most devastating illness across the world causing more number of casualties and deaths every day. Of the multitude of ways through which the normal physiology of conduction system is affected, increase if heart size, also called as Cardiac Hypertrophy (CH), causes a significant number of deaths in affected patients. Cardiac Hypertrophy is classified into Physiological and Pathological variants based on the stimulus that leads to the increase of the size of heart. Also, the effects following the stimulus are different in each variant in regard to signaling events, signaling molecules affected, changes in the anatomy of the heart, etc. There exists clear structural, functional, molecular and metabolic, differences in progression of each variant of CH.
2003
During cardiac hypertrophy individual cardiac myocytes increase in size, which is accompanied by augmented protein synthesis and selective induction of a subset of genes. These phenotypic changes of myocytes are a result from altered intracellular signaling mechanisms and molecules. B-type natriuretic peptide (BNP) gene was selected as a target gene for the study of cardiac signaling mechanisms, since it is activated by mechanical, neural and humoral stimuli during myocyte hypertrophy. To generate hypertrophy of cardiac myocytes, neonatal rat cardiac myocytes were subjected to exogenous hypertrophic agonists such as endothelin-1 (ET-1) or to cyclic mechanical stretch. The role and regulation of transcription factors were studied by utilizing promoter analysis together with site-specific mutations and measurement of DNA binding activity and phosphorylation. GATA-4 mediated signaling was inhibited by blocking DNA binding with decoy oligonucleotides or by decreasing GATA-4 synthesis via adenoviral antisense delivery. ET-1 activated GATA-4 via serine residue phosphorylation, and this effect was mediated via p38 kinase. Similarly, GATA-4 binding activity was increased by ET-1 and mechanical stretch, but it was essential for activation of BNP gene only in the latter stimulation. Importantly, downregulation of GATA-4 protein levels prevented mechanical stretch induced hypertrophy of cardiac myocytes. In contrast, separate mechanism for an ET-1 specific signaling was composed of p38 kinase regulated ETS-like transcription factor-1 (Elk-1). Finally, the effect of mechanical stretch on endogenous endothelin-1 (ET-1) synthesis in cardiac cells was studied. Intrinsic ET-1 synthesis was activated in stretched cardiac myocytes, yet the levels of ET-1 were relatively low. This work suggests that GATA-4 transcription factor is required for mechanical stretch mediated hypertrophic program, and Elk-1 may act as a downstream effector of ET-1 in cardiac myocytes. Taken together, induction of ET-1 and BNP genes as well as activation of GATA-4 and Elk-1 transcription factors are regulated via a network of mitogen activated protein kinase pathways.
APJ acts as a dual receptor in cardiac hypertrophy
Nature, 2012
Cardiac hypertrophy is initiated as an adaptive response to sustained overload but progresses pathologically as heart failure ensues 1 . Here we report that genetic loss of APJ confers resistance to chronic pressure overload by dramatically reducing myocardial hypertrophy and heart failure. In contrast, mice lacking apelin (the endogenous APJ ligand) remain sensitive, suggesting an apelin independent function of APJ. Freshly isolated APJ-null cardiomyocytes exhibit an attenuated response to stretch, indicating that APJ is a mechano-sensor. Activation of APJ by stretch increases cardiomyocyte cell size and induces molecular markers of hypertrophy. Whereas apelin stimulates APJ to activate Gα i and elicits a protective response, stretch signals in an APJdependent G-protein-independent fashion to induce hypertrophy. Stretch-mediated hypertrophy is prevented by knockdown of β-arrestins or by pharmacological doses of apelin acting through Gα i . Taken together, our data indicate that APJ is a bifunctional receptor for both mechanical stretch and for the endogenous peptide apelin. By sensing the balance between these stimuli, APJ occupies a pivotal point linking sustained overload to cardiomyocyte hypertrophy.
European Heart Journal, 2013
Aims Cardiac hypertrophy is a common and often lethal complication of arterial hypertension. Elevation of myocyte cyclic GMP levels by local actions of endogenous atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) or by pharmacological inhibition of phosphodiesterase-5 was shown to counter-regulate pathological hypertrophy. It was suggested that cGMP-dependent protein kinase I (cGKI) mediates this protective effect, although the role in vivo is under debate. Here, we investigated whether cGKI modulates myocyte growth and/or function in the intact organism. Methods and results To circumvent the systemic phenotype associated with germline ablation of cGKI, we inactivated the murine cGKI gene selectively in cardiomyocytes by Cre/loxP-mediated recombination. Mice with cardiomyocyte-restricted cGKI deletion exhibited unaltered cardiac morphology and function under resting conditions. Also, cardiac hypertrophic and contractile responses to b-adrenoreceptor stimulation by isoprenaline (at 40 mg/kg/day during 1 week) were unaltered. However, angiotensin II (Ang II, at 1000 ng/kg/min for 2 weeks) or transverse aortic constriction (for 3 weeks) provoked dilated cardiomyopathy with marked deterioration of cardiac function. This was accompanied by diminished expression of the [Ca 2+ ] i-regulating proteins SERCA2a and phospholamban (PLB) and a reduction in PLB phosphorylation at Ser 16 , the specific target site for cGKI, resulting in altered myocyte Ca 2+ i homeostasis. In isolated adult myocytes, CNP, but not ANP, stimulated PLB phosphorylation, Ca 2+ i-handling, and contractility via cGKI. Conclusion These results indicate that the loss of cGKI in cardiac myocytes compromises the hypertrophic program to pathological stimulation, rendering the heart more susceptible to dysfunction. In particular, cGKI mediates stimulatory effects of CNP on myocyte Ca 2+ i handling and contractility.
PLoS ONE, 2012
Cardiac hypertrophy is a well-established risk factor for cardiovascular morbidity and mortality. Activation of G q/11-mediated signaling is required for pressure overload-induced cardiomyocyte (CM) hypertrophy to develop. We previously showed that among Regulators of G protein Signaling, RGS2 selectively inhibits G q/11 signaling and its hypertrophic effects in isolated CM. In this study, we generated transgenic mice with CM-specific, conditional RGS2 expression (dTG) to investigate whether RGS2 overexpression can be used to attenuate G q/11-mediated signaling and hypertrophy in vivo. Transverse aortic constriction (TAC) induced a comparable rise in ventricular mass and ANF expression and corresponding hemodynamic changes in dTG compared to wild types (WT), regardless of the TAC duration (1-8 wks) and timing of RGS2 expression (from birth or adulthood). Inhibition of endothelin-1-induced G q/11-mediated phospholipase C b activity in ventricles and atrial appendages indicated functionality of transgenic RGS2. However, the inhibitory effect of transgenic RGS2 on G q/11mediated PLCb activation differed between ventricles and atria: (i) in sham-operated dTG mice the magnitude of the inhibitory effect was less pronounced in ventricles than in atria, and (ii) after TAC, negative regulation of G q/11 signaling was absent in ventricles but fully preserved in atria. Neither difference could be explained by differences in expression levels, including marked RGS2 downregulation after TAC in left ventricle and atrium. Counter-regulatory changes in other G q/11regulating RGS proteins (RGS4, RGS5, RGS6) and random insertion were also excluded as potential causes. Taken together, despite ample evidence for a role of RGS2 in negatively regulating G q/11 signaling and hypertrophy in CM, CM-specific RGS2 overexpression in transgenic mice in vivo did not lead to attenuate ventricular G q/11-mediated signaling and hypertrophy in response to pressure overload. Furthermore, our study suggests chamber-specific differences in the regulation of RGS2 functionality and potential future utility of the new transgenic model in mitigating G q/11 signaling in the atria in vivo.