Controllable quantum correlations of two-photon states generated using classically driven three-level atoms (original) (raw)

Abstract

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (57)

  1. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications, John Wiley and Sons, New York, 1992.
  2. R. Loudon, P.L. Knight, J. Modern Opt. 34 (1987) 707.
  3. J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74 (1995) 4091;
  4. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Modern Phys. 75 (2003) 281;
  5. M. Riebe, H. Häffner, C.F. Roos, W. Hänsel, J. Benhelm, G.P.T. Lancaster, T.W. Körber, C. Becher, F. Schmidt-Kaler, D.F.V. James, R. Blatt, Nature 429 (2004) 734.
  6. B. Julsgaard, J. Sherson, J.I. Cirac, J. Fiurášek, E.S. Polzik, Nature 432 (2004) 482.
  7. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Nature 390 (1997) 575;
  8. D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, Phys. Rev. Lett. 80 (1998) 1121.
  9. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Modern Phys. 74 (2002) 145.
  10. N.A. Peters, T.-C. Wei, P.G. Kwiat, Phys. Rev. A 70 (2004) 052309.
  11. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Modern Phys. 81 (2009) 865.
  12. N. Linden, S. Popescu, J.A. Smolin, Phys. Rev. Lett. 97 (2006) 100502.
  13. S. Luo, Phys. Rev. A 77 (2008) 022301.
  14. L. Henderson, V. Vedral, J. Phys. A: Math. Gen. 34 (2001) 6899.
  15. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88 (2002) 017901.
  16. J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 89 (2002) 180402;
  17. M. Horodecki, K. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen(De), U. Sen, Phys. Rev. Lett. 90 (2003) 100402.
  18. O. Kocharovskaya, Ya.I. Khanin, Sov. Phys. JETP 63 (1986) 945;
  19. K.-J. Boller, A. Imamoglu, S.E. Harris, Phys. Rev. Lett. 66 (1991) 2593;
  20. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Modern Phys. 77 (2005) 633.
  21. M.O. Scully, S.-Y. Zhu, A. Gavrielides, Phys. Rev. Lett. 62 (1989) 2813.
  22. M.O. Scully, M.S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge, 1997.
  23. S.N. Sandhya, V. Ravishankar, Phys. Rev. A 82 (2010) 062301.
  24. R. Ghosh, L. Mandel, Phys. Rev. Lett. 59 (1987) 1903.
  25. Y. Yang, F. Li, Phys. Rev. A 80 (2009) 022315;
  26. S. Lee, H. Nha, Phys. Rev. A 82 (2010) 053812;
  27. S. Lee, S. Ji, H. Kim, H. Nha, Phys. Rev. A 84 (2011) 012302;
  28. A. Chatterjee, H.S. Dhar, R. Ghosh, J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 205501. and references therein.
  29. B.R. Mollow, Phys. Rev. A 12 (1975) 1919.
  30. F.T. Hioe, J.H. Eberly, Phys. Rev. A 25 (1982) 2168.
  31. J.P. Marangos, J. Modern Opt. 45 (1998) 471.
  32. J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, M. Xiao, Phys. Rev. A 51 (1995) 576.
  33. H. Tajalli, M. Mahmoudi, A.Ch. Izmailov, Las. Phys. 13 (2003) 1370.
  34. I. Marzoli, J.I. Cirac, R. Blatt, P. Zoller, Phys. Rev. A 49 (1994) 2771.
  35. K. Bergman, H. Theuer, B.W. Shore, Rev. Modern Phys. 70 (1998) 1003.
  36. R.J. Cook, H.J. Kimble, Phys. Rev. Lett. 54 (1985) 1023.
  37. B. Misra, E.C.G. Sudarshan, J. Math. Phys. 18 (1977) 756;
  38. C.B. Chiu, E.C.G. Sudarshan, B. Misra, Phys. Rev. D 16 (1977) 520.
  39. S. Hill, W.K. Wootters, Phys. Rev. Lett. 78 (1997) 5022.
  40. W.H. Zurek, in: P. Meystre, M.O. Scully (Eds.), Information Transfer in Quantum Measurements: Irreversibility and Amplification, in: Quantum Optics, Experimental Gravitation and Measurement Theory, Plenum, New York, 1983, pp. 87-116.
  41. B.R. Rao, R. Srikanth, C.M. Chandrashekar, S. Banerjee, Phys. Rev. A 83 (2011) 064302.
  42. N.J. Cerf, C. Adami, Phys. Rev. Lett. 79 (1997) 5194.
  43. M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen(De), U. Sen, B. Synak-Radtke, Phys. Rev. A 71 (2005) 062307.
  44. W.K. Wootters, Quantum Inf. Comput. 1 (2001) 27.
  45. J.F. Clauser, Phys. Rev. D 9 (1974) 853.
  46. S. Furuichi, M. Abdel-Aty, J. Phys. A: Math. Gen. 34 (2001) 6851;
  47. N. Alioui, N.A. Amroun-Frahi, C. Bendjaballah, EPL 59 (2002) 28;
  48. M. Abdel-Aty, J. Phys. A: Math. Gen. 37 (2004) 1759.
  49. J. Javanainen, EPL 17 (1992) 407.
  50. M. Abazari, A. Mortezapour, M. Mahmoudi, M. Sahrai, Entropy 13 (2011) 1541.
  51. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge, 1995.
  52. The atomic density matrix is a 3×3 matrix pertaining to the three-dimensional single atom. The two-mode photon density matrix is a 4 × 4 matrix, since each photon has two orthogonal states |0⟩ and |1⟩. The equivalence is possible because the atom-field interaction ensures that the photon density matrix has a Schmidt decomposition that reduces its rank to 3.
  53. It is observed that the qualitative nature of the correlation dynamics is not very sensitive to finite detunings.
  54. H.S. Dhar, R. Ghosh, A. Sen(De), U. Sen, EPL 98 (2012) 30013.
  55. J.-S. Xu, X.-Y. Xu, C.-F. Li, C.-J. Zhang, X.-B. Zou, G.-C. Guo, Nature Commun. 1 (2010) 7;
  56. B. Dakić, Y.O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č Brukner, P. Walther, Nat. Phys. 8 (2012) 666;
  57. M. Gu, H.M. Chrzanowski, S.M. Assad, T. Symul, K. Modi, T.C. Ralph, V. Vedral, P.K. Lam, Nat. Phys. 8 (2012) 671.