Subunit Approach to Evaluation of the Immune Protective Potential of Leptospiral Antigens (original) (raw)

Leptospirosis Vaccine: Search for Subunit Candidates

Procedia in Vaccinology, 2009

Subunit vaccines are a potential intervention strategy against leptospirosis, which is a major public health problem in developing countries. Thus far, several proteins have been evaluated as potential vaccine candidates, but all those tested in aluminum hydroxide adjuvant have failed to protect animals against lethal challenge. Seven new leptospiral lipoproteins were evaluated as vaccine candidates. The coding sequences of these lipoproteins were amplified by PCR from Leptospira interrogans serovar Copenhageni, strain Fiocruz L1-130, cloned and expressed in Escherichia coli. The purified proteins were adsorbed in aluminum adjuvant and used in the immunization of four to six weeks old hamsters. After two doses of 60 g of recombinant protein, hamsters were challenged with a lethal dose of L. interrogans. All seven tested proteins failed to fully protect the animals from disease or death. Further study must be undertaken toward developing an efficient subunit vaccine against leptospirosis for humans, livestock and pets.

A Conserved Region of Leptospiral Immunoglobulin-Like A and B Proteins as a DNA Vaccine Elicits a Prophylactic Immune Response against Leptospirosis

Clinical and Vaccine Immunology, 2013

The leptospiral immunoglobulin-like (Lig) proteins LigA and LigB possess immunoglobulin-like domains with 90-amino-acid repeats and are adhesion molecules involved in pathogenicity. They are conserved in pathogenic Leptospira spp. and thus are of interest for use as serodiagnostic antigens and in recombinant vaccine formulations. The N-terminal amino acid sequences of the LigA and LigB proteins are identical, but the C-terminal sequences vary. In this study, we evaluated the protective potential of five truncated forms of LigA and LigB proteins from Leptospira interrogans serovar Canicola as DNA vaccines using the pTARGET mammalian expression vector. Hamsters immunized with the DNA vaccines were subjected to a heterologous challenge with L. interrogans serovar Copenhageni strain Spool via the intraperitoneal route. Immunization with a DNA vaccine encoding LigBrep resulted in the survival of 5/8 (62.5%) hamsters against lethal infection (P < 0.05). None of the control hamsters or animals immunized with the other vaccine preparations survived. The vaccine induced an IgG antibody response and, additionally, conferred sterilizing immunity in 80% of the surviving animals. Our results indicate that the LigBrep DNA vaccine is a promising candidate for inclusion in a protective leptospiral vaccine.

Characterization of leptospiral proteins that afford partial protection in hamsters against lethal challenge with Leptospira interrogans

Journal of Medical Microbiology, 2010

Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira. The whole-genome sequence of Leptospira interrogans serovar Copenhageni together with bioinformatic tools allow us to search for novel antigen candidates suitable for improved vaccines against leptospirosis. This study focused on three genes encoding conserved hypothetical proteins predicted to be exported to the outer membrane. The genes were amplified by PCR from six predominant pathogenic serovars in Brazil. The genes were cloned and expressed in Escherichia coli strain BL21-SI using the expression vector pDEST17. The recombinant proteins tagged with N-terminal 6¾His were purified by metal-charged chromatography. The proteins were recognized by antibodies present in sera from hamsters that were experimentally infected. Immunization of hamsters followed by challenge with a lethal dose of a virulent strain of Leptospira showed that the recombinant protein rLIC12730 afforded statistically significant protection to animals (44 %), followed by rLIC10494 (40 %) and rLIC12922 (30 %). Immunization with these proteins produced an increase in antibody titres during subsequent boosters, suggesting the involvement of a T-helper 2 response. Although more studies are needed, these data suggest that rLIC12730 and rLIC10494 are promising candidates for a multivalent vaccine for the prevention of leptospirosis.

A Prime-Boost Strategy Using the Novel Vaccine Candidate, LemA, Protects Hamsters against Leptospirosis

Clinical and Vaccine Immunology, 2013

Toward developing an effective vaccine capable of conferring heterologous protection, the putative lipoprotein LemA, which presents an M3 epitope similar to that of Listeria, was evaluated as a vaccine candidate in the hamster model of leptospirosis. LemA is conserved (>70% pairwise identity) among the pathogenic Leptospira spp., indicating its potential in stimulating a cross-protective immune response. Using different vaccination strategies, including prime-boost, DNA vaccine, and a subunit preparation, recombinant LemA conferred different levels of protection in hamsters. Significant protection against mortality was observed for the prime-boost and the DNA vaccine strategies, which showed 87.5% (P < 0.01) and 62.5% (P < 0.05) efficacy, respectively. Although the subunit vaccine preparation protected 50.0% of immunized hamsters, the level of protection was not significant. None of the hamsters in the control groups survived challenge with a virulent strain of Leptospira interrogans serogroup Icterohaemorrhagiae. Characterization of the immune response found that the strongest antibody response was stimulated by the subunit vaccine preparation, followed by the prime-boost strategy. The DNA vaccine failed to elicit an antibody response in immunized hamsters.

Antigenic potential of a recombinant polyvalent DNA vaccine against pathogenic leptospiral infection

Antigenic potential of a recombinant polyvalent DNA vaccine against pathogenic leptospiral infection, 2018

Leptospirosis is a serious epidemic disease caused by pathogenic Leptospira species. The disease is endemic in most tropical and sub-tropical regions of the world. Currently, there is no effective polyvalent vaccine for prevention against most of the circulating serovars. Moreover, development of an efficient leptospiral vaccine capable of stimulating cross-protective immune responses against a wide range of serovars remains a daunting challenge. This, in part, is associated with the extensive diversity and variation of leptospiral serovars from region to region. In this study, a multi-epitope DNA vaccine encoding highly immunogenic epitopes from LipL32 and LipL41 was designed using in-silico approach. The DNA encoding antigenic epitopes was constructed from conserved pathogenic Leptospira genes (LipL32 and LipL41). Immunization of golden Syrian hamsters with the multi-epitope chimeric DNA vaccine resulted in the production of both agglutinating and neutralizing antibodies as evidence by MAT and in-vitro growth inhibition tests respectively. The antibodies produced reacted against eight different serovars and significantly reduced renal colonization following in vivo challenge. The vaccine was also able to significantly reduce renal colonization which is a very important factor responsible for persistence of leptospires among susceptible and reservoir animal hosts. In conclusion, the leptospiral multi-epitope chimeric DNA vaccine can serve as a potentially effective and safe vaccine against infection with different pathogenic leptospiral serovars

Failure of LIC13435 Protein of Leptospira interrogans Serovar Copenhageni to Confer Protection in Immunized Hamsters

Journal of Vaccines & Vaccination, 2011

Leptospirosis is a re-emergent zoonosis characterized by an acute febrile and systemic illness in humans caused by pathogenic spirochetes belonging to the genus Lepstospira. This disease has global distribution, and it is more frequent in tropical and subtropical areas. The complete genomic sequence of Leptospira species offered the possibility to identify potential vaccine candidates for leptospirosis, since environmental control measures are difficult to implement and there is not an ideal vaccine available for human use. Secreted and surface exposed molecules are potential targets for inducing protective immune response in the host. Although we selected six predicted sequences coding for putative outer membrane proteins with unknown function to be analyzed as vaccinal candidates against leptospirosis and for biological characterization, only the lic13435 gene was expressed and purified. The lic13435 gene is specific for pathogenic leptospires suggesting a possible virulence and/or pathogenicity associated function. The recombinant protein was purified and tested as vaccine candidate against leptospirosis. The immunization with the recombinant protein was able to produce a significant immune response in hamsters. Nevertheless, the animals were not protected against leptospirosis.

Evaluation of Immunoprotective Activity of Six Leptospiral Proteins in the Hamster Model of Leptospirosis

Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira. The whole-genome sequence of L. in-terrogans serovar Copenhageni together with bioinformatics tools represent a great opportunity to search for novel anti-gen candidates that could be used as subunit vaccine against leptospirosis. We focused on six genes encoding for con-served hypothetical proteins predicted to be exported to the outer membrane. The genes were amplified by PCR from Lep-tospira interrogans genomic DNA and were cloned and expressed in Escherichia coli. The recombinant proteins tagged with N-terminal hexahistidine were purified by metal-charged chromatography. The immunization of hamsters followed by challenge with lethal dose of virulent strain of Leptospira showed that the recombinant proteins Lsa21, Lsa66 and rLIC11030 elicited partial protection to animals. These proteins could be used combined or in a mixture with novel adju-vants in order to improve their effectiveness.

LigB subunit vaccine confers sterile immunity against challenge in the hamster model of leptospirosis

PLoS neglected tropical diseases, 2017

Neglected tropical diseases, including zoonoses such as leptospirosis, have a major impact on rural and poor urban communities, particularly in developing countries. This has led to major investment in antipoverty vaccines that focus on diseases that influence public health and thereby productivity. While the true, global, impact of leptospirosis is unknown due to the lack of adequate laboratory diagnosis, the WHO estimates that incidence has doubled over the last 15 years to over 1 million cases that require hospitalization every year. Leptospirosis is caused by pathogenic Leptospira spp. and is spread through direct contact with infected animals, their urine or contaminated water and soil. Inactivated leptospirosis vaccines, or bacterins, are approved in only a handful of countries due to the lack of heterologous protection (there are > 250 pathogenic Leptospira serovars) and the serious side-effects associated with vaccination. Currently, research has focused on recombinant va...

Evaluation of different strategies to promote a protective immune response against leptospirosis using a recombinant LigA and LigB chimera

Vaccine, 2019

Leptospirosis is a zoonosis of worldwide distribution, caused by infection with pathogenic Leptospira species. The vaccines that are currently available are bacterins, with limited human use, that confer shortterm, serovar-specific immunity. Lig proteins are considered to be the best vaccine candidates to date. Here, we aimed to construct a recombinant Lig chimera (LC) comprised of LigAni and LigBrep fragments, and to evaluate it as subunit or DNA vaccine using different administration strategies. Vaccines were formulated with 50 mg of recombinant LC associated with different adjuvants or with 100 mg of pTARGET/LC. Four-week-old hamsters received two doses of vaccine with different strategies and were challenged with 5 Â DL 50 Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130. The immune response generated by Lig chimera conferred 100% protection to hamsters treated with at least one dose of recombinant LC. Despite the high levels of antibodies that vaccinated animals produced, a sterilizing immunity was not achieved. The lack of a sterilizing immunity could indicate the importance of a mixed humoral and cellular immune response. The present study generated insights that will be useful in the future development of improved subunit vaccines against leptospirosis.

Challenges for the development of a universal vaccine against leptospirosis revealed by the evaluation of 22 vaccine candidates

Frontiers in Cellular and Infection Microbiology

Leptospirosis is a neglected disease of man and animals that affects nearly half a million people annually and causes considerable economic losses. Current human vaccines are inactivated whole-cell preparations (bacterins) of Leptospira spp. that provide strong homologous protection yet fail to induce a cross-protective immune response. Yearly boosters are required, and serious side-effects are frequently reported so the vaccine is licensed for use in humans in only a handful of countries. Novel universal vaccines require identification of conserved surface-exposed epitopes of leptospiral antigens. Outer membrane β-barrel proteins (βb-OMPs) meet these requirements and have been successfully used as vaccines for other diseases. We report the evaluation of 22 constructs containing protein fragments from 33 leptospiral βb-OMPs, previously identified by reverse and structural vaccinology and cell-surface immunoprecipitation. Three-dimensional structures for each leptospiral βb-OMP were ...