Stochastic inversion for electromagnetic geophysics: Practical challenges and improving convergence efficiency (original) (raw)

are not designed to provide a robust evaluation of uncertainty that reflects the limitations of the geophysical technique. Stochastic inversions, which do provide a sampling-based measure of uncertainty, are computationally expensive and not straightforward to implement for nonexperts (nonstatisticians). Our results include stochastic inversion for magnetotelluric and controlled source electromagnetic data. Two Markov Chain sampling algorithms (Metropolis-Hastings and Slice Sampler) can significantly decrease the computational expense compared to using either sampler alone. The statistics of the stochastic inversion allow for (1) variances that better reveal the measurement sensitivities of the two different electromagnetic techniques than traditional techniques and (2) models defined by the median and modes of parameter probability density functions, which produce amplitude and phase data that are consistent with the observed data. In general, parameter error estimates from the covariance matrix significantly underestimate the true parameter error, whereas the parameter variance derived from Markov chains accurately encompass the error.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.