Stability map for nanocrystalline and amorphous materials (original) (raw)

Abstract

We present a stability map which predicts the domains of shear instability due to grain rotation in nanocrystalline materials. The onset of this mode of instability is influenced by grain-size-dependent mechanisms and the length-scale of intergranular interaction. The map shows the grain size regimes that are inherently susceptible to this mode for a range of materials. In the amorphous limit, the model predicts embryonic nuclei sizes of about 10 -50 nm, which agrees well with the shear band thicknesses for many metallic glasses.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (29)

  1. J. W. Cahn and J. E. Taylor, Acta Mater. 52, 4887 (2004).
  2. A. J. Haslam, D. Moldovan, V. Yamakov, and D. Wolf et al., Acta Mater. 51, 2097 (2003).
  3. M. Murayama, J. M. Howe, H. Hidaka, and S. Takaki, Science 295, 2433 (2002).
  4. M. Upmanyu, D. J. Srolovitz, A. E. Lobkovsky, and J. A. Warren et al., Acta Mater. 54, 1707 (2006).
  5. A. Aydina, R. I. Borja, and P. Eichhubl, J. Struct. Geol. 28, 83 (2006).
  6. D. M. Mueth, G. F. Debregeas, G. S. Karczmar, and P. J. Eng et al., Nature (London) 406, 385 (2000).
  7. A. S. Argon, Acta Metall. 27, 47 (1979).
  8. M. L. Falk and J. S. Langer, Phys. Rev. E 57, 7192 (1998).
  9. N. Hu and J. F. Molinari, J. Mech. Phys. Solids 52, 499 (2004).
  10. A. L. Rechenmacher, J. Mech. Phys. Solids 54, 22 (2006).
  11. J. S. Langer, Phys. Rev. E 64, 011504 (2001).
  12. M. Y. Gutkin and I. A. Ovid'ko, Appl. Phys. Lett. 87, 251916 (2005).
  13. D. Gianola, S. V. Petegem, M. Legros, and S. Brandstetter et al., Acta Mater. 54, 2253 (2006).
  14. D. S. Gianola, C. Eberl, X. M. Cheng, and K. J. Hemker, Adv. Mater. 20, 303 (2008).
  15. D. Jia, K. T. Ramesh, and E. Ma, Acta Mater. 51, 3495 (2003).
  16. C. C. Koch, Scr. Mater. 49, 657 (2003).
  17. S. P. Joshi and K. T. Ramesh, Acta Mater. 56, 282 (2008).
  18. M. A. Meyers, A. Mishra, and D. J. Benson, Prog. Mater. Sci. 51, 427 (2006).
  19. Y. Zhang and A. L. Greer, Appl. Phys. Lett. 89, 071907 (2006).
  20. A. Latapie and D. Farkas, Scr. Mater. 48, 611 (2003).
  21. M. Chen, A. Inoue, W. Zhang, and T. Sakurai, Phys. Rev. Lett. 96, 245502 (2006).
  22. F. Shimizu, S. Ogata, and J. Li, Acta Mater. 54, 4293 (2006).
  23. A. C. Lund, T. G. Nieh, and C. A. Schuh, Phys. Rev. B 69, 012101 (2004).
  24. C. A. Schuh, T. C. Hufnagel, and U. Ramamurty, Acta Mater. 55, 4067 (2007).
  25. S. Cheng, E. Ma, Y. M. Wang, and L. J. Kecskes et al., Acta Mater. 53, 1521 (2005).
  26. P. L. Sun, E. K. Cerreta, G. T. Gray, and J. F. Bingert, Metall. Mater. Trans. A 37, 2983 (2006).
  27. R. Huang, Z. Suo, J. H. Prevost, and W. D. Nix, J. Mech. Phys. Solids 50, 1011 (2002).
  28. L. Pechenik, Phys. Rev. E 72, 021507 (2005).
  29. J. S. Langer and L. Pechenik, Phys. Rev. E 68, 061507 (2003).