Diversity of Actinobacteria Associated with the Marine Ascidian Eudistoma toealensis (original) (raw)

An analysis of the sponge Acanthostrongylophora igens' microbiome yields an actinomycete that produces the natural product manzamine A

Frontiers in Marine Science, 2014

Sponges have generated significant interest as a source of bioactive and elaborate secondary metabolites that hold promise for the development of novel therapeutics for the control of an array of human diseases. However, research and development of marine natural products can often be hampered by the difficulty associated with obtaining a stable and sustainable production source. Herein we report the first successful characterization and utilization of the microbiome of a marine invertebrate to identify a sustainable production source for an important natural product scaffold. Through molecular-microbial community analysis, optimization of fermentation conditions and MALDI-MS imaging, we provide the first report of a sponge-associated bacterium (Micromonospora sp.) that produces the manzamine class of antimalarials from the Indo-Pacific sponge Acanthostrongylophora ingens (Thiele, 1899) (Class Demospongiae, Order Haplosclerida, Family Petrosiidae). These findings suggest that a general strategy of analysis of the macroorganism's microbiome could significantly transform the field of natural products drug discovery by gaining access to not only novel drug leads, but the potential for sustainable production sources and biosynthetic genes at the same time.

Phylogenetic identification of bacteria with antimicrobial activities isolated from Mediterranean sponges

Biomolecular Engineering, 2003

We investigated the interaction between tunicate Ascidia ornata and microorganism. This microorganism can be interpreted as a source of food or symbionts for mutualism. Symbiosis of microorganism with tunicate may produce metabolites that have biological activity like antimicrobial. Ascidia ornate were collected from hard coral at Lemon Island Doreri Bay Manokwari. Bacteria isolate of tunicate Ascidia ornatashowed antimicrobial activities against Gram-negative, Gram-positive and the fungus Candida albicans. Eight isolates which can have antimicrobial activity like Bacillus cereus, Bacillus sp, Bacillus megaterium, Bacillus pumilus, Enterobacter sp, Enterobacter hormaechei and Ochrobactrum sp. The isolate was identified with 16S rDNA sequencing with 99-100 % sequence similarities. Bacillus species was identified can against all human pathogenic human isolates including methicillin-resistent Staphyloccocus aureus. The marine symbionts bacteria collected has potential to inhibit human pathogenic microbes and could be used as raw material for medicine.

Bacterial Community Analyses of Two Red Sea Sponges

Marine Biotechnology, 2010

Red Sea sponges offer potential as sources of novel drugs and bioactive compounds. Sponges harbor diverse and abundant prokaryotic communities. The diversity of Egyptian sponge-associated bacterial communities has not yet been explored. Our study is the first culture-based and culture-independent investigation of the total bacterial assemblages associated with two Red Sea Demosponges, Hyrtios erectus and Amphimedon sp. Denaturing gradient gel electrophoresis fingerprint-based analysis revealed statistically different banding patterns of the bacterial communities of the studied sponges with H. erectus having the greater diversity. 16S rRNA clone libraries of both sponges revealed diverse and complex bacterial assemblages represented by ten phyla for H. erectus and five phyla for Amphimedon sp. The bacterial community associated with H. erectus was dominated by Deltaproteobacteria. Clones affiliated with Gammaproteobacteria were the major component of the clone library of Amphimedon sp. About a third of the 16S rRNA gene sequences in these communities were derived from bacteria that are novel at least at the species level. Although the overall bacterial communities were significantly different, some bacterial groups, including members of Alphaproteobacteria, Gammaproteobacteria, Acidobacteria, and Actinobacteria, were found in both sponge species. The culture-based component of this study targeted Actinobacteria and resulted in the isolation of 35 sponge-associated microbes. The current study lays the groundwork for future studies of the role of these diverse microbes in the ecology, evolution, and development of marine sponges. In addition, our work provides an excellent resource of several candidate bacteria for production of novel pharmaceutically important compounds.

Molecular richness and biotechnological potential of bacteria cultured from Irciniidae sponges in the north-east Atlantic

FEMS Microbiology Ecology, 2013

Several bioactive compounds originally isolated from marine sponges have been later ascribed or suggested to be synthesized by their symbionts. The cultivation of sponge-associated bacteria provides one possible route to the discovery of these metabolites. Here, we determine the bacterial richness cultured from two irciniid sponge species, Sarcotragus spinosulus and Ircinia variabilis, and ascertain their biotechnological potential. A total of 279 isolates were identified from 13 sponge specimens. These were classified into 17 generawith Pseudovibrio, Ruegeria and Vibrio as the most dominantand 3 to 10 putatively new bacterial species. While 16S rRNA gene sequencing identified 29 bacterial phylotypes at the 'species' level (97% sequence similarity), whole-genome BOX-PCR fingerprinting uncovered 155 genotypes, unveiling patterns of specimen-dependent occurrence of prevailing bacterial genomes across sponge individuals. Among the BOX-PCR genotypes recovered, 34% were active against clinically relevant strains, with Vibrio isolates producing the most active antagonistic effect. Several Pseudovibrio genotypes showed the presence of polyketide synthase (PKS) genes, and these were for the first time detected in isolates of the genus Aquimarina (Bacteroidetes). Our results highlight great biotechnological potential and interest for the Irciniidae sponge family and their diversified bacterial genomes.

Diversity and distribution of the bioactive actinobacterial genus Salinispora from sponges along the Great Barrier Reef.

Antonie van Leewenhoek Journal of Microbiologie , 2012

Isolates from the marine actinobacterial genus Salinispora were cultured from marine sponges collected from along the length of the Great Barrier Reef (GBR), Queensland, Australia. Strains of two species of Salinispora, Salinispora arenicola and "Salinispora pacifica", were isolated from GBR sponges Dercitus xanthus, Cinachyrella australiensis and Hyattella intestinalis. Phylogenetic analysis of the 16S rRNA gene sequences of representative strains, selected via BOX-PCR screening, identified previously unreported phylotypes of the species "S. pacifica". The classification of these microdiverse 16S rRNA groups was further confirmed by analysis of the ribonuclease P RNA (RNase P RNA) gene through both phylogenetic and secondary structure analysis. The use of RNase P RNA sequences combined with 16S rRNA sequences allowed distinction of six new intraspecies phylotypes of "S. pacifica" within the geographical area of the GBR alone. One of these new phylotypes possessed a localised regional distribution within the GBR.

Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile

Applied and …, 2001

Molecular techniques were employed to document the microbial diversity associated with the marine sponge Rhopaloeides odorabile. The phylogenetic affiliation of sponge-associated bacteria was assessed by 16S rRNA sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rDNA analysis. The community structure was extremely diverse with representatives of the Actinobacteria, low-G+C gram-positive bacteria, the β- and γ-subdivisions of the Proteobacteria, Cytophaga/Flavobacterium, green sulfur bacteria, green nonsulfur bacteria, planctomycetes, and other sequence types with no known close relatives. FISH probes revealed the spatial location of these bacteria within the sponge tissue, in some cases suggesting possible symbiotic functions. The high proportion of 16S rRNA sequences derived from novel actinomycetes is good evidence for the presence of an indigenous marine actinomycete assemblage in R. odorabile. High microbial diversity was inferred from low duplication of clones in a library with 70 representatives. Determining the phylogenetic affiliation of sponge-associated microorganisms by 16S rRNA analysis facilitated the rational selection of culture media and isolation conditions to target specific groups of well-represented bacteria for laboratory culture. Novel media incorporating sponge extracts were used to isolate bacteria not previously recovered from this sponge.

Assessing the diversity of bacterial communities from marine sponges and their bioactive compounds

Saudi Journal of Biological Sciences, 2021

Symbiotic bacteria play vital roles in the survival and health of marine sponges. Sponges harbor rich, diverse and species-specific microbial communities. Symbiotic marine bacteria have increasingly been reported as promising source of bioactive compounds. A culturomics-based study was undertaken to study the diversity of bacteria from marine sponges and their antimicrobial potential. We have collected three sponge samples i.e. Acanthaster carteri, Rhytisma fulvum (soft coral) and Haliclona caerulea from north region (Obhur) of Red Sea, Jeddah Saudi Arabia. Total of 144 bacterial strains were isolated from three marine sponges using culture dependent method. Screening of isolated strains showed only 37 (26%) isolates as antagonists against oomycetes pathogens (P. ultimum and P. capsici). Among 37 antagonistic bacteria, only 19 bacterial strains exhibited antibacterial activity against human pathogens (Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 8739, Enterococcus faecalis ATCC 29212). Four major classes of bacteria i.e c-Proteobacteria, a-Proteobacteria, Firmicutes and Actinobacteria were recorded from three marine sponges where c-Proteobacteria was dominant class. One potential bacterial strain Halomonas sp. EA423 was selected for identification of bioactive metabolites using GC and LC-MS analyses. Bioactive compounds Sulfamerazine, Metronidazole-OH and Ibuprofen are detected from culture extract of strain Halomonas sp. EA423. Overall, this study gives insight into composition and diversity of antagonistic bacterial community of marine sponges and coral from Red Sea and presence of active metabolites from potential strain. Our results showed that these diverse and potential bacterial communities further need to be studied to exploit their biotechnological significance.

Actinomycetes from Red Sea Sponges: Sources for Chemical and Phylogenetic Diversity

Marine Drugs, 2014

The diversity of actinomycetes associated with marine sponges collected off Fsar Reef (Saudi Arabia) was investigated in the present study. Forty-seven actinomycetes were cultivated and phylogenetically identified based on 16S rRNA gene sequencing and were assigned to 10 different actinomycete genera. Eight putatively novel species belonging to genera Kocuria, Mycobacterium, Nocardia, and Rhodococcus were identified based on sequence similarity values below 98.2% to other 16S rRNA gene sequences available in the NCBI database. PCR-based screening for biosynthetic genes including type I and type II polyketide synthases (PKS-I, PKS-II) as well as nonribosomal peptide synthetases (NRPS) showed that 20 actinomycete isolates encoded each at least one type of biosynthetic gene. The organic extracts of nine isolates displayed bioactivity against at least one of the test pathogens, which were Gram-positive and Gram-negative bacteria, fungi, human parasites, as well as in a West Nile Virus protease enzymatic assay. These

Comprehensive Investigation of Marine Actinobacteria Associated with the Sponge Halichondria panicea

Applied and Environmental Microbiology, 2010

Representatives of Actinobacteria were isolated from the marine sponge Halichondria panicea collected from the Baltic Sea (Germany). For the first time, a comprehensive investigation was performed with regard to phylogenetic strain identification, secondary metabolite profiling, bioactivity determination, and genetic exploration of biosynthetic genes, especially concerning the relationships of the abundance of biosynthesis gene fragments to the number and diversity of produced secondary metabolites. All strains were phylogenetically identified by 16S rRNA gene sequence analyses and were found to belong to the genera Actinoalloteichus, Micrococcus, Micromonospora, Nocardiopsis, and Streptomyces. Secondary metabolite profiles of 46 actinobacterial strains were evaluated, 122 different substances were identified, and 88 so far unidentified compounds were detected. The extracts from most of the cultures showed biological activities. In addition, the presence of biosynthesis genes encoding polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) in 30 strains was established. It was shown that strains in which either PKS or NRPS genes were identified produced a significantly higher number of metabolites and exhibited a larger number of unidentified, possibly new metabolites than other strains. Therefore, the presence of PKS and NRPS genes is a good indicator for the selection of strains to isolate new natural products.