Assessment of drought tolerance and its potential yield penalty in potato (original) (raw)
Functional Plant Biology, 2015
Abstract
ABSTRACT Climate models predict an increased likelihood of seasonal droughts for many areas of the world. Breeding for drought tolerance could be accelerated by marker-assisted selection. As a basis for marker identification, we studied genetic variance, predictability of field performance, and potential costs of tolerance in potato (Solanum tuberosum L.). Potato produces high calories per unit water invested, but is drought-sensitive. In 14 independent pot or field trials, 34 potato cultivars were grown under optimal and reduced water supply to determine starch yield. In an artificial data set, we tested several stress indices for their power to distinguish tolerant and sensitive genotypes independent of their yield potential. We identified DRYM (deviation of relative starch yield from its experimental median) as the most efficient index. DRYM corresponded qualitatively to the partial least square-model based metric of drought stress tolerance in a stress effect model. The DRYM identified significant tolerance variation in the European potato cultivar population to allow tolerance breeding and marker identification. Tolerance results from pot trials correlated with those from field trials, but predicted field performance worse than field growth parameters. Drought tolerance correlated negatively with yield under optimal conditions in the field. The distribution of yield data versus DRYM indicated that tolerance can be combined with average yield potentials, thus circumventing potential yield penalties in tolerance breeding.
Christian Schudoma hasn't uploaded this paper.
Let Christian know you want this paper to be uploaded.
Ask for this paper to be uploaded.