A transcriptomic insight into the infective juvenile stage of the insect parasitic nematode, Heterorhabditis indica (original) (raw)
Related papers
Journal of Nematology, 2021
Heterorhabditis indica is one of the most widely used entomopathogenic nematodes for the biological control of agricultural insect pests worldwide. The draft genome of H. indica was sequenced using three genomic libraries of 300 bp, 600 bp and 5 kb sizes by Illumina HiSeq platform. The size of the draft genome assembly was 91.26 Mb, comprising 3,538 scaffolds. Genome completeness analysis by BUSCO (Benchmarking Universal Single-Copy Orthologs) showed 84% complete, and 6.5% fragmented BUSCOs. Further, 10,494 protein-coding genes were predicted. The H. indica draft genome will enable comparative and functional genomic studies in Heterorhabditis nematodes.
2007
We compared Heterorhabditis bacteriophora GPS11 expressed sequence tags (ESTs) to the ESTs of animal-parasitic, human-parasitic, plant-parasitic, and free-living nematodes. We identified 127 previously nondescribed ESTs of which 119 had homologs in ESTs and 8 had homologs in proteins of free-living nematodes. These ESTs were assigned putative functions in transcription, signal transduction, cell cycle control, metabolism, information processing, and cellular processes, thereby providing better insight into H.
PLoS ONE, 2013
Heterorhabditis bacteriophora are entomopathogenic nematodes that have evolved a mutualism with Photorhabdus luminescens bacteria to function as highly virulent insect pathogens. The nematode provides a safe harbor for intestinal symbionts in soil and delivers the symbiotic bacteria into the insect blood. The symbiont provides virulence and toxins, metabolites essential for nematode reproduction, and antibiotic preservation of the insect cadaver. Approximately half of the 21,250 putative protein coding genes identified in the 77 Mbp high quality draft H. bacteriophora genome sequence were novel proteins of unknown function lacking homologs in Caenorhabditis elegans or any other sequenced organisms. Similarly, 317 of the 603 predicted secreted proteins are novel with unknown function in addition to 19 putative peptidases, 9 peptidase inhibitors and 7 C-type lectins that may function in interactions with insect hosts or bacterial symbionts. The 134 proteins contained mariner transposase domains, of which there are none in C. elegans, suggesting an invasion and expansion of mariner transposons in H. bacteriophora. Fewer Kyoto Encyclopedia of Genes and Genomes Orthologies in almost all metabolic categories were detected in the genome compared with 9 other sequenced nematode genomes, which may reflect dependence on the symbiont or insect host for these functions. The H. bacteriophora genome sequence will greatly facilitate genetics, genomics and evolutionary studies to gain fundamental knowledge of nematode parasitism and mutualism. It also elevates the utility of H. bacteriophora as a bridge species between vertebrate parasitic nematodes and the C. elegans model.
Transcriptomic analysis of the entomopathogenic nematode Heterorhabditis bacteriophora TTO1
2009
Background The entomopathogenic nematode Heterorhabditis bacteriophora and its symbiotic bacterium, Photorhabdus luminescens, are important biological control agents of insect pests. This nematode-bacterium-insect association represents an emerging tripartite model for research on mutualistic and parasitic symbioses. Elucidation of mechanisms underlying these biological processes may serve as a foundation for improving the biological control potential of the nematode-bacterium complex.
BMC Genomics, 2017
Background: Despite important progress in the field of innate immunity, our understanding of host immune responses to parasitic nematode infections lags behind that of responses to microbes. A limiting factor has been the obligate requirement for a vertebrate host which has hindered investigation of the parasitic nematode infective process. The nematode parasite Heterorhabditis bacteriophora offers great potential as a model to genetically dissect the process of infection. With its mutualistic Photorhabdus luminescens bacteria, H. bacteriophora invades multiple species of insects, which it kills and exploits as a food source for the development of several nematode generations. The ability to culture the life cycle of H. bacteriophora on plates growing the bacterial symbiont makes it a very exciting model of parasitic infection that can be used to unlock the molecular events occurring during infection of a host that are inaccessible using vertebrate hosts. Results: To profile the transcriptional response of an infective nematode during the early stage of infection, we performed next generation RNA sequencing on H. bacteriophora IJs incubated in Manduca sexta hemolymph plasma for 9 h. A subset of up-regulated and down-regulated genes were validated using qRT-PCR. Comparative analysis of the transcriptome with untreated controls found a number of differentially expressed genes (DEGs) which cover a number of different functional categories. A subset of DEGs is conserved across Clade V parasitic nematodes revealing an array of candidate parasitic genes.
2010
Trichostrongylus colubriformis (Strongylida), a small intestinal nematode of small ruminants, is a major cause of production and economic losses in many countries. The aims of the present study were to define the transcriptome of the adult stage of T. colubriformis, using 454 sequencing technology and bioinformatic analyses, and to predict the main pathways that key groups of molecules are linked to in this nematode. A total of 21,259 contigs were assembled from the sequence data produced from a normalized cDNA library; 7,876 of these contigs had known orthologues in the free-living nematode Caenorhabditis elegans, and encoded, amongst others, proteins with 'transthyretin-like' (8.8%), 'RNA recognition' (8.4%) and 'metridin-like ShK toxin' (7.6%) motifs. Bioinformatic analyses inferred that relatively high proportions of the C. elegans homologues are involved in biological pathways linked to 'peptidases' (4%), 'ribosome' (3.6%) and 'oxidative phosphorylation' (3%). Highly represented were peptides predicted to be associated with the nervous system, digestion of host proteins or inhibition of host proteases. Probabilistic functional gene networking of the complement of C. elegans orthologues (n = 2,126) assigned significance to particular subsets of molecules, such as protein kinases and serine/threonine phosphatases. The present study represents the first, comprehensive insight into the transcriptome of adult T. colubriformis, which provides a foundation for fundamental studies of the molecular biology and biochemistry of this parasitic nematode as well as prospects for identifying targets for novel nematocides. Future investigations should focus on comparing the transcriptomes of different developmental stages, both genders and various tissues of this parasitic nematode for the prediction of essential genes/gene products that are specific to nematodes.
De Novo Transcriptome Sequencing and Analysis of the Cereal Cyst Nematode, Heterodera avenae
PLoS ONE, 2014
The cereal cyst nematode (CCN, Heterodera avenae) is a major pest of wheat (Triticum spp) that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two stages of H. avenae. After sequencing extracted RNA from pre parasitic infective juvenile and adult stages of the life cycle, 131 million Illumina high quality paired end reads were obtained which generated 27,765 contigs with N50 of 1,028 base pairs, of which 10,452 were annotated. Comparative analyses were undertaken to evaluate H. avenae sequences with those of other plant, animal and free living nematodes to identify differences in expressed genes. There were 4,431 transcripts common to H. avenae and the free living nematode Caenorhabditis elegans, and 9,462 in common with more closely related potato cyst nematode, Globodera pallida. Annotation of H. avenae carbohydrate active enzymes (CAZy) revealed fewer glycoside hydrolases (GHs) but more glycosyl transferases (GTs) and carbohydrate esterases (CEs) when compared to M. incognita. 1,280 transcripts were found to have secretory signature, presence of signal peptide and absence of transmembrane. In a comparison of genes expressed in the pre-parasitic juvenile and feeding female stages, expression levels of 30 genes with high RPKM (reads per base per kilo million) value, were analysed by qRT-PCR which confirmed the observed differences in their levels of expression levels. In addition, we have also developed a user-friendly resource, Heterodera transcriptome database (HATdb) for public access of the data generated in this study. The new data provided on the transcriptome of H. avenae adds to the genetic resources available to study plant parasitic nematodes and provides an opportunity to seek new effectors that are specifically involved in the H. avenae-cereal host interaction.
PLOS ONE
The entomopathogenic nematode, Heterorhabditis indica, is a popular biocontrol agent of high commercial significance. It possesses tremendous genetic architecture to survive desiccation stress by undergoing anhydrobiosis to increase its lifespan—an attribute exploited in the formulation technology. The comparative transcriptome of unstressed and anhydrobiotic H. indica revealed several previously concealed metabolic events crucial for adapting towards the moisture stress. During the induction of anhydrobiosis in the infective juveniles (IJ), 1584 transcripts were upregulated and 340 downregulated. As a strategy towards anhydrobiotic survival, the IJ showed activation of several genes critical to antioxidant defense, detoxification pathways, signal transduction, unfolded protein response and molecular chaperones and ubiquitin-proteasome system. Differential expression of several genes involved in gluconeogenesis - β-oxidation of fatty acids, glyoxylate pathway; glyceroneogenesis; fat...
Genes
Plant-parasitic nematodes cause extensive annual yield losses to worldwide agricultural production. Most cultivated plants have no known resistance against nematodes and the few bearing a resistance gene can be overcome by certain species. Chemical methods that have been deployed to control nematodes have largely been banned from use due to their poor specificity and high toxicity. Hence, there is an urgent need for the development of cleaner and more specific control methods. Recent advances in nematode genomics, including in phytoparasitic species, provide an unprecedented opportunity to identify genes and functions specific to these pests. Using phylogenomics, we compared 61 nematode genomes, including 16 for plant-parasitic species and identified more than 24,000 protein families specific to these parasites. In the genome of Meloidogyne incognita, one of the most devastating plant parasites, we found ca. 10,000 proteins with orthologs restricted only to phytoparasitic species an...
Scientific Reports, 2016
The entomopathogenic nematode Steinernema carpocapsae has been widely used for the biological control of insect pests. It shares a symbiotic relationship with the bacterium Xenorhabdus nematophila, and is emerging as a genetic model to study symbiosis and pathogenesis. We obtained a high-quality draft of the nematode's genome comprising 84,613,633 bp in 347 scaffolds, with an N50 of 1.24 Mb. To improve annotation, we sequenced both short and long RNA and conducted shotgun proteomic analyses. S. carpocapsae shares orthologous genes with other parasitic nematodes that are absent in the free-living nematode C. elegans, it has ncRNA families that are enriched in parasites, and expresses proteins putatively associated with parasitism and pathogenesis, suggesting an active role for the nematode during the pathogenic process. Host and parasites might engage in a co-evolutionary armsrace dynamic with genes participating in their interaction showing signatures of positive selection. Our analyses indicate that the consequence of this arms race is better characterized by positive selection altering specific functions instead of just increasing the number of positively selected genes, adding a new perspective to these co-evolutionary theories. We identified a protein, ATAD-3, that suggests a relevant role for mitochondrial function in the evolution and mechanisms of nematode parasitism. Global losses due to pests can vary from about 26 to 80% depending on the type of crop 1. Chemical pesticides are commonly used to fight this problem, however, they pose threats to humans, wildlife, and might have an adverse impact on soil fertility by killing beneficial microorganisms 2. Other strategies rely on biological control agents, but their use is not generalized because of their limited efficiency when compared to pesticides. Genetic improvements are possible, especially when genomic information of the biological agent is available 3,4. Entomopathogenic nematodes (EPNs) from the family of Steinernematidae have been commercialized in many countries as a