A Review Study: Using Stem Cells in Cartilage Regeneration and Tissue Engineering (original) (raw)
Related papers
Study : Using Stem Cells in Cartilage Regeneration and Tissue Engineering
2016
His interst is researching on mesenchmal stem cell, drug delivery, chondroblast, effect of growth factors on differentiation to chondroblast, evaluation of adhesion and growth of chondrocyte cells on PHB based scaffolds. Articular cartilage, the load-bearing tissue of the joint, has limited repair and regeneration ability. The scarcity of treatment modalities for large chondral defects has motivated researchers to engineer cartilage tissue constructs that can meet the functional demands of this tissue in vivo. Cartilage tissue engineering requires 3 components: cells, scaffold, and environment. Owning to their easy isolation, expansion, and multilineage differentiation, adult stem cells, specifically multipotential mesenchymal stem cells, are considered the proper candidate for tissue engineering. Successful outcome of cell-based cartilage tissue engineering ultimately depends on the proper differentiation of stem cells into chondrocytes and assembly of the appropriate cartilaginous matrix to achieve the load-bearing capabilities of the natural articular cartilage. Furthermore, multiple parameters such as growth factors, signaling molecules, and physical conditions must be considered. Adult mesenchymal stem-cell-based tissue engineering is a promising technology for creating a transplantable cartilage replacement to improve joint function.
Arthritis & Rheumatism, 2006
Degenerative joint diseases such as osteoarthritis cause pain and compromise mobility, thus posing a significant disease burden. Articular cartilage, the loadbearing tissue of the joint, has limited potential for repair and regeneration. An attractive approach is to develop engineered cartilage constructs for the repair of large chondral defects (1). Cartilage tissue engineering requires 3 components: cells, scaffold, and environment. Adult stem cells, specifically mesenchymal stem cells (MSCs), are often considered a promising candidate cell source because of the ease with which they can be isolated and expanded and their chondrogenic differentiation capabilities. MSCs are isolated from many adult tissue types, such as bone marrow, skin, muscle, and trabecular bone, and are characterized by their ability to undergo extensive self-renewal in vitro and to assume multilineage differentiation, including osteogenesis, chondrogenesis, and adipogenesis (2). Commonly selected by differential substrate adhesion, MSCs exhibit surface epitopes such as Stro1 and CD105, although no MSC-specific molecular marker(s) have been identified. The chondrogenic activity of MSCs has been demonstrated in vitro in high-density pellet cultures treated with transforming growth factor  (TGF) (3). The appearance of a cartilage phenotype is accompanied by characteristic histologic features, the expression of cartilage-associated genes such as types II and IX collagen as well as aggrecan and dermatopontin, and the biosynthesis of sulfated proteoglycans. Translating the micro-scale cartilage formation by MSCs in vitro to larger-scale cartilage tissue engineering ex vivo and/or in vivo is a current challenge of musculoskeletal regenerative medicine.
Adult Stem Cells for Cartilage Tissue Engineering and Regeneration
Current Rheumatology Reviews, 2008
Osteoarthritis (OA) is the most common joint disease and the leading cause of disability in the developed countries. Its clinical manifestations include pain and impairment to movement, and often affect surrounding tissues with symptoms of local inflammation. It is a progressively debilitating disease that is often associated with injury and aging. However, current pharmacological and surgical treatment modalities ultimately fail to stall the progression of OA. Viable treatment options are in need, and current effort of cartilage tissue engineering and regeneration, especially using chondroprogenitor cells, such as adult mesenchymal stem cells (MSCs), has offered hope of eventual success. First, ex vivo MSC cartilage tissue engineering can potentially produce effective replacement constructs for focal cartilage defects to prevent the progression to OA. This paper will review the factors important for cartilage tissue engineering, including cells, scaffold, and environment, as well as current problems and areas that await more research. Secondly, MSCs possess the capacity to function as a systematic regulator, to influence the local environment, via direct or indirect interactions, including soluble factors. Through these functions, MSCs can enhance local progenitor cell mediated regeneration, confer immunomodulation and anti-inflammatory effects, which can prove to be critically important in the setting of cell therapy for OA, a degenerative disease with associated local inflammation. Taken together, MSCs, used either as a structural substitute in a tissue engineered construct, or in cell therapy utilizing their modulating functions, or both, present promise in the treatment of OA, although clearly more research is needed to achieve this ultimate goal.
Adult Stem Cells for Cartilage Regeneration
Cureus, 2022
As cartilage is an avascular, aneural structure, it has very low capabilities of self-repair. Osteoarthritis prevalence is increasing, and there are no clinically approved management techniques that can cure the degradation of cartilage. This report investigates the efficacy of different sources of cells to generate articular cartilage. Autologous chondrocyte implantation has been used to some extent in clinics; however it has not generated efficient, reliable results, and there is no evidence of long-term success. The usage of stem cells is more promising, particularly mesenchymal stem cells (MSCs). Human embryonic stem cells (hESCs) have also been trialed; however, it is important to note that the process of differentiation into chondrocytes is not fully understood, and the cartilage produced can often be of poor quality. MSCs seems to be the way forward, and hESCs will perhaps need further study with the usage of MSC differentiation methodology.
Applications of Mesenchymal Stem Cells in Cartilage Tissue Engineering- Part 1
Recent Patents on Regenerative Medicinee, 2011
Arthritic diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA) cause considerable pain, reduced mobility and significant disability among affected patients and present a major challenge to clinicians and basic scientists due to the limited inherent repair capacity of articular cartilage. The poor capacity of articular cartilage for self-repair is largely due to its avascular nature and has resulted in the development of a variety of surgical treatments including Autologous Chondrocyte Implantation (ACI) or Autologous Chondrocyte Transplantation (ACT), microfracture and mosaicplasty. Mesenchymal stem cells (MSCs) are multipotent progenitor cells with significant potential for chondrogenesis and new cartilage formation. Novel approaches using MSCs derived from bone marrow and adipose tissue have been proposed as alternatives to patient derived chondrocytes. In this paper we provide a scientific background to the biology of articular cartilage biology and its degeneration in arthritis. We also summarize some of the recent patents on applications of MSCs in articular cartilage tissue engineering and regenerative medicine for OA, RA and other joint diseases that involve cartilage degradation.
Mesenchymal stem cells as a potential pool for cartilage tissue engineering
Annals of Anatomy - Anatomischer Anzeiger, 2008
Osteoarthritis (OA) resulting from trauma, degenerative or age-related disease presents a major clinical challenge due to the limited repair capacity of articular cartilage. This poor self-repair capacity of osteochondral defects has resulted in the development of a wide variety of new treatment approaches. Although the use of chondrocytes in applications of cartilage tissue engineering is still prevalent, concerns associated with donor-site morbidity, cell de-differentiation and the limited lifespan of these cells have brought the use of mesenchymal stem cells (MSCs) to the forefront of such applications. Therefore, in the last two decades MSCs have come into the focus of connective tissue engineering and regenerative medicine and have become increasingly sought after as an alternative cell source for improving well-established methods of osteochondrotic cartilage defect repair such as the Autologous Chondrocyte Transplantation method, but are also being tested as an ideal cell source in combination with newly developed implantable scaffolds or as a target/carrier cell in other new concepts of regenerative medicine. However, up to now, although in animal models MSCs have already shown significant potential for cartilage repair and novel approaches using MSCs as an alternative cell source to patient-derived chondrocytes are being tested, much more research is needed before feasible clinical application of MSCs becomes reality.
Mesenchymal stem cell-based tissue engineering strategies for repair of articular cartilage
Histology and histopathology, 2014
Restoration of articular cartilage function and structure following pathological or traumatic damage is still considered a challenging problem in the orthopaedic field. Currently, tissue engineering-based reconstruction of articular cartilage is a feasible and continuously developing strategy to restore structure and function. Successful articular cartilage tissue engineering strategy relies largely on several essential components including cellular component, supporting 3D carrier scaffolding matrix, bioactive agents, proper physical stimulants, and safe gene delivery. Designing the right formulations from these components remain the main concern of the orthopaedic community. Utilization of mesenchymal stem cells (MSCs) for articular cartilage tissue engineering is continuously increasing compared to use of chondrocytes. Various sources of MSCs have been investigated including adipose tissue, amniotic fluid, blood, bone marrow, dermis, embryonic stem cells, infrapatellar fat pad, m...
Histology and histopathology, 2009
Defects of load-bearing connective tissues such as articular cartilage, often result from trauma, degenerative or age-related disease. Osteoarthritis (OA) presents a major clinical challenge to clinicians due to the limited inherent repair capacity of articular cartilage. Articular cartilage defects are increasingly common among the elderly population causing pain, reduced joint function and significant disability among affected patients. The poor capacity for self-repair of chondral defects has resulted in the development of a large variety of treatment approaches including Autologous Chondrocyte Transplantation (ACT), microfracture and mosaicplasty methods. In ACT, a cartilage biopsy is taken from the patient and articular chondrocytes are isolated. The cells are then expanded after several passages in vitro and used to fill the cartilage defect. Since its introduction, ACT has become a widely applied surgical method with good to excellent clinical outcomes. More recently, classic...
Cartilage Tissue Engineering: Towards a Biomaterial-Assisted Mesenchymal Stem Cell Therapy
Current Stem Cell Research & Therapy, 2009
Injuries to articular cartilage are one of the most challenging issues of musculoskeletal medicine due to the poor intrinsic ability of this tissue for repair. Despite progress in orthopaedic surgery, the lack of efficient modalities of treatment for large chondral defects has prompted research on tissue engineering combining chondrogenic cells, scaffold materials and environmental factors. The aim of this review is to focus on the recent advances made in exploiting the potentials of cell therapy for cartilage engineering. These include: 1) defining the best cell candidates between chondrocytes or multipotent progenitor cells, such as multipotent mesenchymal stromal cells (MSC), in terms of readily available sources for isolation, expansion and repair potential; 2) engineering biocompatible and biodegradable natural or artificial matrix scaffolds as cell carriers, chondrogenic factors releasing factories and supports for defect filling, 3) identifying more specific growth factors and the appropriate scheme of application that will promote both chondrogenic differentiation and then maintain the differentiated phenotype overtime and 4) evaluating the optimal combinations that will answer to the functional demand placed upon cartilage tissue replacement in animal models and in clinics. Finally, some of the major obstacles generally encountered in cartilage engineering are discussed as well as future trends to overcome these limiting issues for clinical applications.