Comparative proteomics for the characterization of the most relevant Amblyomma tick species as vectors of zoonotic pathogens worldwide (original) (raw)

The molecular basis of the Amblyomma americanum tick attachment phase

Experimental and Applied Acarology, 2007

Towards discovery of molecular signaling cascades that trigger and/or facilitate the tick attachment and formation of its feeding lesion, suppressive subtractive hybridization, high throughput sequencing and validation of differential expression by cDNA dot blot hybridization were performed on Amblyomma americanum ticks that had attained appetence and were exposed to feeding stimuli. This approach allowed for identification of 40 genes that are up regulated before ticks begin to penetrate the host skin. Based on BLAST and secondary structure homology searches as well as motif scan analyses, provisional identification was assigned to ∼38% (15/40) of the identified genes that have been classified into 6 groups: Ligand binding (2 insulin-like growth-factor binding, lipocalin/histamine binding), immune responsive (tumor necrosis receptor associated factor 6, Microplusin-like antimicrobial), stress response proteins (Heat shock protein [HSP] 90, HSP40, 78 kDa glucose regulated protein [GRP78]), transporter polypeptides (ABC transporter and organic anion transporter polypeptide [contains Kazal-type serine proteinase inhibitor domain]) and enzymes/regulators (extracellular matrix mettaloprotease inducer, chitinase), extracellular matrix-like proteins (tropoelastin, flagelliform silk protein). Sixty-two percent (25/40) of genes that did not show similarity to known proteins are classified as orphans. BLASTN homology search against the tick EST database revealed that 50% (20/40) of candidate genes are conserved in other ticks suggesting that molecular events underlying the A. americanum tick attachment phase may be conserved in other tick species. Consistent with the general assumption that genes that are up regulated in ticks before they started to penetrate host skin represented the tick’s molecular preparedness to evade host defense during the attachment phase, real time RT-PCR analyses data demonstrated that the majority of the tested genes (9/11) were highly expressed during the first 24 h of feeding. Identification of genes in this study provides the framework for future studies to elucidate molecular signaling cascades that regulate early molecular events during the tick attachment phase.

The sialotranscriptome of Amblyomma triste, Amblyomma parvum and Amblyomma cajennense ticks, uncovered by 454-based RNA-seq

Parasites & vectors, 2014

Tick salivary constituents antagonize inflammatory, immune and hemostatic host responses, favoring tick blood feeding and the establishment of tick-borne pathogens in hosts during hematophagy. Amblyomma triste, A. cajennense and A. parvum ticks are very important in veterinary and human health because they are vectors of the etiological agents for several diseases. Insights into the tick salivary components involved in blood feeding are essential to understanding vector-pathogen-host interactions, and transcriptional profiling of salivary glands is a powerful tool to do so. Here, we functionally annotated the sialotranscriptomes of these three Amblyomma species, which allowed comparisons between these and other hematophagous arthropod species. mRNA from the salivary glands of A. triste, A. cajennense and A. parvum ticks fed on different host species were pyrosequenced on a 454-Roche platform to generate four A. triste (nymphs fed on guinea pigs and females fed on dogs) libraries, on...

Analysis of the Salivary Gland Transcriptome of Unfed and Partially Fed Amblyomma sculptum Ticks and Descriptive Proteome of the Saliva

Frontiers in cellular and infection microbiology, 2017

Ticks are obligate blood feeding ectoparasites that transmit a wide variety of pathogenic microorganisms to their vertebrate hosts. Amblyomma sculptum is vector of Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever (RMSF), the most lethal rickettsiosis that affects humans. It is known that the transmission of pathogens by ticks is mainly associated with the physiology of the feeding process. Pathogens that are acquired with the blood meal must first colonize the tick gut and later the salivary glands (SG) in order to be transmitted during a subsequent blood feeding via saliva. Tick saliva contains a complex mixture of bioactive molecules with anticlotting, antiplatelet aggregation, vasodilatory, anti-inflammatory, and immunomodulatory properties to counteract both the hemostasis and defense mechanisms of the host. Besides facilitating tick feeding, the properties of saliva may also benefits survival and establishment of pathogens in the host. In the current s...

Proteomics Characterization of Tick-Host-Pathogen Interactions

Methods in Molecular Biology, 2014

Ticks are blood-feeding arthropod ectoparasites of wild and domestic animals that transmit disease-causing pathogens to humans and animals worldwide and a good model for the characterization of tick-host-pathogen interactions. Tick-host-pathogen interactions consist of dynamic processes involving genetic traits of hosts, pathogens, and ticks that mediate their development and survival. Proteomics provides information on the protein content of cells and tissues that may differ from results at the transcriptomics level and may be relevant for basic biological studies and vaccine antigen discovery. In this chapter, we describe various methods for protein extraction and for proteomics analysis in ticks based on one-dimensional gel electrophoresis to characterize tick-host-pathogen interactions. Particularly relevant for this characterization is the use of blood-fed ticks. Therefore, we put special emphasis on working with replete ticks collected after feeding on vertebrate hosts.

Expressed sequence tags (ESTs) from the salivary glands of the tick Amblyomma cajennense (Acari: Ixodidae)

Toxicon, 2008

The neotropical tick Amblyomma cajennense is a significant pest to domestic animals, the most frequently human-biting tick in South America and the main vector of Brazilian spotted fever (caused by Rickettsia rickettsii), a deadly human disease. The purpose of this study is to characterize the adult A. cajennense salivary gland transcriptome by expressed sequence tags (ESTs). We report the analysis of 1754 clones obtained from a cDNA library, which reveal mainly transcripts related to proteins involved in the hemostatic processes, especially proteases and their inhibitors. Remarkably, five types of possible serine protease inhibitors were found, including a molecule with a distinguished structure that contains repeats of the active motif of hirudin inhibitors. Besides, other components that may be active over the host immune system or acting as defensins against infecting microorganisms were also described, including a molecule similar to insect venom allergens. The conjunction of components from this transcriptome suggests a diverse strategy of A. cajennense tick during feeding, but emphasized in the coagulation system. r

Microbial communities and interactions in the lone star tick, Amblyomma americanum

2008

To quantify microbial composition and interactions, we identified prokaryotic communities in the lone star tick (Amblyomma americanum) based on 16S rRNA gene sequences and direct probing. The lone star tick is the vector of emerging diseases and host to additional symbionts of unknown activity, and is representative of other blood-sucking arthropods. We evaluated the potential for vertical (transovarial) transmission by molecular analysis of microbial symbionts from egg and larval clutches. Direct probing of adults (N = 8 populations from the southeastern and midwestern USA, 900 ticks total) revealed three vertically transmitted symbionts: a Coxiella symbiont occurred at 100% frequency, Rickettsia species occurred in 45-61% of all ticks in every population and an Arsenophonus symbiont occurred in 0-90% of ticks per population. Arsenophonus and Rickettsia exhibited significant heterogeneity in frequency among populations. The human pathogens Ehrlichia chafeensis and Borrelia lonestari were rare in most populations. Additional microbes were detected sporadically. Most ticks (78%) were co-infected by two or three microbes but statistical analysis indicated no significant deviation from random co-occurrence. Our findings indicate that microbial communities within lone star ticks are diverse, and suggest that direct probing for a wider range of prokaryotes and application of quantitative polymerase chain reaction (PCR) may provide further insights into microbial interactions within disease vectors. Our results also emphasize the close phylogenetic relationship between tick symbionts and human pathogens, and consistent differences in their prevalence.

Electrophoretically detectable protein variation in natural populations of the lone star tick, Amblyomma americanum (Acari: Ixodidae)

Heredity, 1986

Nine populations of Amblyomma americanum (L.) were examined electrophoretically for variation of 21 enzymes. Only three enzymes were not polymorphic and the average heterozygosity per individual (h) for the species was O•085 with a range of 0077 to 0.110, comparing well with values in other arthropods. The average Nei identity value for pairwise comparisons among the nine populations was high, 0994 0004 (I SD). These high identity values and the absence of geographic structuring of the protein variation suggest that this species is genetically homogeneous. Normal levels of genie variability within and a lack of divergence between populations were not predicted by models developed to describe these genetic characteristics on the basis of the heterogeneities encountered by parasites in their environment. An analysis of data from several different species of ticks suggests host mobility and abundance, as well as tick abundance and selectivity in choosing a host, are important parameters in determining genetic variation in these ectoparasites.

Why so many unknown genes? Partitioning orphans from a representative transcriptome of the lone star tick Amblyomma americanum

Background: Genomic resources within the phylum Arthropoda are largely limited to the true insects but are beginning to include unexplored subphyla, such as the Crustacea and Chelicerata. Investigations of these understudied taxa uncover high frequencies of orphan genes, which lack detectable sequence homology to genes in pre-existing databases. The ticks (Acari: Chelicerata) are one such understudied taxon for which genomic resources are urgently needed. Ticks are obligate blood-feeders that vector major diseases of humans, domesticated animals, and wildlife. In analyzing a transcriptome of the lone star tick Amblyomma americanum, one of the most abundant disease vectors in the United States, we find a high representation of unannotated sequences. We apply a general framework for quantifying the origin and true representation of unannotated sequences in a dataset and for evaluating the biological significance of orphan genes. Results: Expressed sequence tags (ESTs) were derived from different life stages and populations of A. americanum and combined with ESTs available from GenBank to produce 14,310 ESTs, over twice the number previously available. The vast majority (71%) has no sequence homology to proteins archived in UniProtKB. We show that poor sequence or assembly quality is not a major contributor to this high representation by orphan genes. Moreover, most unannotated sequences are functional: a microarray experiment demonstrates that 59% of functional ESTs are unannotated. Lastly, we attempt to further annotate our EST dataset using genomic datasets from other members of the Acari, including Ixodes scapularis, four other tick species and the mite Tetranychus urticae. We find low homology with these species, consistent with significant divergence within this subclass. Conclusions: We conclude that the abundance of orphan genes in A. americanum likely results from 1) taxonomic isolation stemming from divergence within the tick lineage and limited genomic resources for ticks and 2) lineagespecific genes needing functional genomic studies to evaluate their association with the unique biology of ticks. The EST sequences described here will contribute substantially to the development of tick genomics. Moreover, the framework provided for the evaluation of orphan genes can guide analyses of future transcriptome sequencing projects.

Identification of Endosymbionts in Ticks by Broad-Range Polymerase Chain Reaction and Electrospray Ionization Mass Spectrometry

Journal of Medical Entomology, 2012

Many organisms, such as insects, Þlarial nematodes, and ticks, contain heritable bacterial endosymbionts that are often closely related to transmissible tickborne pathogens. These intracellular bacteria are sometimes unique to the host species, presumably due to isolation and genetic drift. We used a polymerase chain reaction/electrospray ionization-mass spectrometry assay designed to detect a wide range of vectorborne microorganisms to characterize endosymbiont genetic signatures from Amblyomma americanum (L.), Amblyomma maculatum Koch, Dermacentor andersoni Stiles, Dermacentor occidentalis Marx, Dermacentor variabilis (Say), Ixodes scapularis Say, Ixodes pacificus Cooley & Kohls, Ixodes ricinus (L.), and Rhipicephalus sanguineus (Latreille) ticks collected at various sites and of different stages and both sexes. The assay combines the abilities to simultaneously detect pathogens and closely related endosymbionts and to identify tick species via characterization of their respective unique endosymbionts in a single test.