Cytotoxic T-lymphocyte antigen-4 inhibits GATA-3 but not T-bet mRNA expression during T helper cell differentiation (original) (raw)
Related papers
CTLA-4 regulates the requirement for cytokine-induced signals in TH2 lineage commitment
Nature Immunology, 2003
Naive TH cells can differentiate into two functionally distinct subsets defined by their cytokine profiles. TH1 cells produce interleukin-2 (IL-2), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), whereas TH2 cells produce IL-4, IL-5 and IL-13. The strength of the T cell receptor (TCR) signal, the cytokine milieu and the cell cycle all influence T cell differentiation; however, the relative importance of these different factors in the complex molecular process leading to stable TH1 or TH2 phenotypes is not fully understood.
CTLA-4-Mediated inhibition of early events of T cell proliferation
Journal of immunology (Baltimore, Md. : 1950), 1999
CTLA-4 engagement by mAbs inhibits, while CD28 enhances, IL-2 production and proliferation upon T cell activation. Here, we have analyzed the mechanisms involved in CTLA-4-mediated inhibition of T cell activation of naive CD4+ T cells using Ab cross-linking. CTLA-4 ligation inhibited CD3/CD28-induced IL-2 mRNA accumulation by inhibiting IL-2 transcription, which appears to be mediated in part through decreasing NF-AT accumulation in the nuclei. However, CTLA-4 ligation did not appear to affect the CD28-mediated stabilization of IL-2 mRNA. Further, CTLA-4 engagement inhibited progression through the cell cycle by inhibiting the production of cyclin D3, cyclin-dependent kinase (cdk)4, and cdk6 when the T cells were stimulated with anti-CD3/CD28 and with anti-CD3 alone. These results indicate that CTLA-4 signaling inhibits events early in T cell activation both at IL-2 transcription and at the level of IL-2-independent events of the cell cycle, and does not simply oppose CD28-mediated ...
CTLA-4 Engagement Inhibits Th2 but not Th1 Cell Polarisation
Clinical & Developmental Immunology, 2003
CTLA-4 deficient mice show severe lymphoproliferative disorders with T helper sub-population skewed toward the Th2 phenotype. In the present work, we investigated the role of CTLA-4 in T helper cell subset differentiation. Naïve CD4 þ cells were stimulated with anti-CD3 and anti-CD28 mAbs in the presence of either IL-12 or IL-4 to induce polarisation to Th1 or Th2 cells, respectively. Under these two polarising conditions cells express comparable levels of CTLA-4. CTLA-4 was stimulated by plastic-bound mAb. The frequency of IFN-g-and IL-4-producing cells were estimated by FACS analysis. In parallel cultures, polarised Th1 and Th2 cells were re-stimulated with anti-CD3 and anti-CD28 mAbs for 48 h and their culture supernatants analysed by ELISA. Results show that CTLA-4 engagement during differentiation inhibits polarisation of naïve CD4 þ cells to the Th2 but not the Th1 cell subset. At variance, once cells are polarised, CTLA-4 engagement inhibits cytokine production in both effector Th2 and Th1 cells. Altogether these data indicate that CTLA-4 may interfere not only in the signalling involved in acute transcriptional activation of both Th1 and Th2 cells but also in the development of one of the Th cell subsets.
The role of CTLA-4 in the regulation of T cell immune responses
Immunology and Cell Biology, 1999
Over the past few years a great deal of research has examined how T cell-dependent immune responses are initiated and subsequently regulated. Ligation of the TCR with an antigenic peptide bound to an MHC protein on a professional APC provides the crucial antigen-specific stimulus required for T cell activation. Interaction of CD28 with CD80 or CD86 molecules on APC initiates a costimulatory or second signal within the T cell which augments and sustains T cell activation initiated through the TCR. However, recently it has become clear that T cell immune responses are a result of a balance between stimulatory and inhibitory signals. Cytotoxic T lymphocyteassociated molecule-4 (CTLA-4) is a cell surface molecule that is expressed nearly exclusively on CD4 + and CD8 + T cells. Investigation into the role of CTLA-4 in the regulation of T cell immune responses has revealed that CTLA-4 is a very important molecule involved in the maintenance of T cell homeostasis. In the present review, evidence for the proposed inhibitory role of CTLA-4 is examined and a model suggesting a role for CTLA-4 in both early and late stages of T cell activation is presented.
The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses
Nature Reviews Immunology, 2011
Receptor-ligand interactions. CTLA4 binds the same two ligands -CD80 and CD86 -as CD28. Although not reviewed here, these ligands are mainly expressed on APCs and are generally upregulated following Abstract | The T cell protein cytotoxic T lymphocyte antigen 4 (CTLA4) was identified as a crucial negative regulator of the immune system over 15 years ago, but its mechanisms of action are still under debate. It has long been suggested that CTLA4 transmits an inhibitory signal to the cells that express it. However, not all the available data fit with a cell-intrinsic function for CTLA4, and other studies have suggested that CTLA4 functions in a T cell-extrinsic manner. Here, we discuss the data for and against the T cell-intrinsic and -extrinsic functions of CTLA4.