Seizure Activity Results in a Rapid Induction of Nuclear Factor-κB in Adult but Not Juvenile Rat Limbic Structures (original) (raw)
Related papers
NeuroToxicology, 2014
Predicting seizurogenic properties of pharmacologically active compounds is difficult due to the complex nature of the mechanisms involved and because of the low sensitivity and high variability associated with current behavioral-based methods. To identify early neuronal signaling events predictive of seizure, we exposed transgenic NF-kB/EGFP reporter mice to multiple low doses of kainic acid (KA), postulating that activation of the stress-responsive NF-kB pathway could be a sensitive indicator of seizurogenic potential. The sub-threshold dose level proximal to the induction of seizure was determined as 2.5 mg/kg KA, using video EEG monitoring. Subsequent analysis of reporter expression demonstrated significant increases in NF-kB activation in the CA3 and CA1 regions of the hippocampus 24 h after a single dose of 2.5 mg/kg KA. This response was primarily observed in pyramidal neurons with little non-neuronal expression. Neuronal NF-kB/EGFP expression was observed in the absence of glial activation, indicating a lack of neurodegeneration-induced neuroinflammation. Protein expression of the immediate-early gene, Nurr1, increased in neurons in parallel to NF-kB activation, supporting that the sub-threshold doses of KA employed directly caused neuronal stress. Lastly, KA also stimulated NF-kB activation in organotypic hippocampal slice cultures established from NF-kB/EGFP reporter mice. Collectively, these data demonstrate the potential advantages of using genetically encoded stress pathway reporter models in the screening of seizurogenic properties of new pharamacologically active compounds.
Nuclear factor kappa B-mediated kainate neurotoxicity in the rat and hamster hippocampus
Neuroscience, 1999
Administration of the excitotoxin kainate produces seizure activity and selective neuronal death in various brain areas. We examined the degeneration pattern of hippocampal neurons following systemic injections of kainate in the hamster and the rat. As reported, treatment with kainate resulted in severe neuronal loss in the hilus and CA3 in the rat. While the hilar neurons were also highly vulnerable to kainate in the hamster, neurons in the CA1 area, but not CA3, were highly sensitive to kainate. In both animals, immunoreactivity to anti-p50 nuclear factor kappa B antibody was increased in nuclei of the hilar neurons within 4 h following administration of kainate. Kainate treatment also increased the nuclear factor kappa B immunoreactivity in hamster CA1 neurons and rat CA3 neurons 24 h later. Neurons showing intense nuclear factor kappa B signal were stained with acid fuchsin. Kainate also increased DNA binding activity of p50 and p65 nuclear factor kappa B in the nuclear extract of the hippocampal formation as analysed by electrophoretic mobility shift assay in the hamster, suggesting that activation of nuclear factor kappa B may contribute to kainate-induced hippocampal degeneration. Administration of 100 nmol dizocilpine maleate 3 h prior to kainate attenuated kainate-induced activation of nuclear factor kappa B and neuronal death in CA1 in the hamster. The present study provides evidence that the differential vulnerability of neurons in the rat and the hamster hippocampus to kainate is partly mediated by mechanisms involving N-methyl-d-aspartate-dependent activation of nuclear factor kappa B. ᭧ 1999 IBRO. Published by Elsevier Science Ltd.
Brain Research, 2001
The effects of kainic acid (KA)-induced limbic seizures have been investigated on cytochrome c oxidase (COx) activity, COx subunit IV mRNA abundance, ATP and phosphocreatine (PCr) levels in amygdala, hippocampus and frontal cortex of rat brain. Rats were killed either 1 h, three days or seven days after the onset of status epilepticus (SE) by CO and decapitation for the assay of COx activity and by 2 head-focused microwave for the determination of ATP and PCr. Within 1 h COx activity and COx subunit IV mRNA increased in all brain areas tested between 120% and 130% of control activity, followed by a significant reduction from control, in amygdala and hippocampus on day three and seven, respectively. In amygdala, ATP and PCr levels were reduced to 44% and 49% of control 1 h after seizures. No significant recovery was seen on day three or seven. Pretreatment of rats with the spin trapping agent N-tert-butyl-a-21 phenylnitrone (PBN, 200 mg kg , i.p.) 30 min before KA administration had no effect on SE, but protected COx activity and attenuated changes in energy metabolites. Pretreatment for three days with the endogenous antioxidant vitamin E (Vit-E, 100 mg / kg, i.p.) had an even greater protective effect than PBN. Both pretreatment regimens attenuated KA-induced neurodegenerative changes, as assessed by histology and prevention of the decrease of COx subunit IV mRNA and COx activity in hippocampus and amygdala, otherwise seen following KA-treatment alone. These findings suggest a close relationship between SE-induced neuronal injury and deficits in energy metabolism due to mitochondrial dysfunction.
Molecular Brain Research, 1991
The influence of kainic acid (KA)-induced limbic seizure activity on the expression of mRNA for nerve growth factor (NGF) in adult rat brain was studied using in situ hybridization and S1 nuclease protection techniques with RNA probes complementary to murine and rat NGF mRNA. Within hippocampus, intracerebroventricular injection of 0.5/~g KA caused a dramatic bilateral increase in hybridization of the 35S-labeled cRNA within stratum granulosum. This increase was first evident 1 h post-KA, appeared maximal at approximately 20-fold control levels at 2-3 h post-injection, and declined to control levels by 48 h post-injection. During the period of maximal hybridization, all but the deepest cells within stratum granulosum appeared to be autoradiographically labeled. Hybridization of the NGF cRNA probe was also increased within superficial layers of piriform and entorhinal cortex and, to much lesser extent, within scattered neurons of layers II and III of neocortex in KA-treated rats. In olfactory cortical areas, hybridization was maximally elevated 15.5-24.5 h after KA injection. In contrast to these effects, KA treatment did not consistently influence the density of hybridization, or number of neurons labeled, within the dentate gyrus hilus or the hippocampus proper (CA1-CA3). In agreement with the in situ hybridization results, S1 nuclease protection assay detected KA-induced increases in hybridization within pooled dentate gyrus/CA1 samples, but not hippocampal CA3 samples. These data support the conclusion that seizure activity stimulates a transient increase in NGF expression by select populations of forebrain neurons and indicates that experimental seizure paradigms might be further exploited for analyses of the mechanisms of NGF regulation and processing in the adult brain.
NeuroToxicology, 2008
Intense seizure activity associated with status epilepticus and excitatory amino acid (EAA) imbalance initiates oxidative damage and neuronal injury in CA1 of the ventral hippocampus. We tested the hypothesis that dendritic degeneration of pyramidal neurons in the CA1 hippocampal area resulting from seizure-induced neurotoxicity is modulated by cerebral oxidative damage. Kainic acid (KA, 1 nmol/5 μl) was injected intracerebroventricularly to C57Bl/6 mice. F 2-isoprostanes (F 2-IsoPs) and F 4-neuroprostanes (F 4-NeuroPs) were used as surrogate measures of in vivo oxidative stress and biomarkers of lipid peroxidation. Nitric oxide synthase (NOS) activity was quantified by evaluating citrulline level and pyramidal neuron dendrites and spines were evaluated using rapid Golgi stains and a Neurolucida system. KA produced severe seizures in mice immediately after its administration and a significant (p<0.001) increase in F 2-IsoPs, F 4-NeuroPs and citrulline levels were seen 30 min following treatment. At the same time, hippocampal pyramidal neurons showed significant (p<0.001) reduction in dendritic length and spine density. In contrast, no significant change in neuronal dendrite and spine density or F 2-IsoP, F 4-NeuroPs and citrulline levels were found in mice pretreated with Vitamin E (α-tocopherol, 100 mg/kg, ip) for 3 days, or with N-tert-butyl-α-phenylnitrone (PBN, 200 mg/kg, ip) or ibuprofen (inhibitors of cyclooxygenase, COX, 14 μg/ml of drinking water) for 2 weeks prior to KA treatment. These findings indicate novel interactions among free radical-induced generation of F 2-IsoPs and F 4-NeuroPs, nitric oxide and dendritic degeneration, closely associate oxidative damage to neuronal membranes with degeneration of the dendritic system, and point to possible interventions to limit severe damage in acute neurological disorders.
The progressive appearance of ['Hlkainic acid binding sites with age has been studied in membrane suspensions prepared from various regions of the rat limbic system, and by autoradiography. Binding sites with fast dissociation rate appeared earlier than binding sites with slow dissociation rate. Scatchard analysis demonstrated apparent receptor heterogeneity for both subclasses. High affinity components were detected in the hippocampus as early as 10 days after birth, but in the amygdala + pirifonn lobe were found only towards the end of the third week, when animals also respond to parenteral kainic acid, for the first time, with limbic seizures accompanied by metabolic activation of the amygdala. Slice autoradiography revealed distinct labelling of the hippocampal CA3 region by postnatal day 10. A comparison with the ontogenesis of the kainic acid-induced seizure-brain damage syndrome suggests a role of high affinity receptors as mediators of metabolic nerve cell activation by kainic acid. However, this receptor interaction per se does not result in neuronal damage to the vulnerable region of the Ammon's horn, which will only occur at an age when also the amygdala is activated by the neurotoxin.
MATURATION OF KAINIC ACID SEIZURE-BRAIN DAMAGE SYNDROME IN THE RAT. II. HISTOPATHOLOGICAL SEQUELAE
The histopathological sequelae of parenteral administration of kainic acid were investigated in immature rats (3-35 days of age). The brains were fixed l-14 days after the administration of kainate and the damage evaluated by means of argyrophylic (Fink-Heimer. Gallyas or Nauta-Gygax) and Nissl stains. In animals of less than 18 days of age there was no sign of damage even after 1-2 h of severe tonico-clonic convulsions. Between 18 and 35 days after birth, there was a progressive increase in the severity of the damage, the adult pattern being reached at the latter age. As in adult animals, brain damage was most severe in structures which are part of the limbic system, i.e. the hippocampal formation, lateral septum, amygdaloid complex, claustrum, piriform cortex, etc. In addition to neuronal abnormalities. the following reactions were observed: hypertrophy and swelling of satellite oligodendroglia, proliferation of hypertrophic microglia, proliferation of astroglia and hypertrophy of endothelial cells in the capillary wall. The latter type of change, together with local coagulative necrosis. was almost exclusively restricted to the granular and molecular layers of the fascia dentata.
Journal of Molecular Neuroscience, 1999
Kainic acid (KA) administered systemically to rats produces seizures and brain damage. We measured an increase in reactive oxidant species (ROS) during KA-induced seizures in the extracellular fluid (ECF) of the piriform cortex, a brain region known to be subsequently damaged. Intracerebral microdialysis samples were collected and assayed for isoluminol-dependent chemiluminescence before and after injection of KA (16 mg/kg, ip). Hydrogen peroxide (H 2 O 2 ) concentrations were calculated from catalase-sensitive chemiluminescence, the difference between total and catalase-resistant chemiluminescence. During generalized tonic-clonic seizures, both total and catalase-resistant chemiluminescence increased significantly in samples from brain ECF. Catalase-resistant chemiluminescence, most likely produced by ascorbic acid, increased for a full hour during sustained seizure activity. H 2 O 2 concentrations showed a trend towards elevation during seizures. Increased ROS suggest that oxidative stress occurs in brain ECF during sustained seizure activity.