Beyond the unknown: understanding prehistoric patterns in the urbanised landscape of Flanders (original) (raw)

Measuring the relative topographic position of archaeological sites in the landscape, a case study on the Bronze Age barrows in northwest Belgium

2011

Local topography is an important parameter determining the erection of a certain type of site on a certain location in the landscape. Despite the importance of topography in archaeological landscape research, the role of local topography has remained rather unexplored compared to other specific topographic parameters such as slope, aspect, curvature or visibility. Therefore, three methods to assess the relative topographic position of sites are applied and discussed here. The Bronze Age barrow dataset of northwest Belgium acts as the subject for this methodological case study. First, elevation percentile calculates the area that is lower than the central point within a predetermined neighborhood. Secondly, difference from mean elevation measures the relative topographic position of the central point as the difference between the elevation of this central point and the mean elevation within a predetermined neighborhood. And finally, deviation from mean elevation calculates the relative topographic position of the central point as the difference from mean elevation divided by the standard deviation of elevation, within a predetermined neighborhood. These three methods, each with their advantages and disadvantages, prove to be an added value for archaeological landscape research.

Zimmermann, Andreas; Karl Peter Wendt, Thomas Frank, Johanna Hilpert: Landscape Archaeology in Central Europe. - Proceedings of the Prehistoric Society 75, 2009, 1–53.

Estimations of population density, which consider regional variability, are an important key variable in archaeology as they have consequences not only for the environmental but also for the economical and social domains. In this paper, a ten-step procedure of a consistent group of methods is described which deals with the data required for estimations of population density at different scale levels (from excavation to large-scale distribution maps). For distribution maps, a method is presented by which densities of sites are displayed using optimal isolines. These demarcate so called 'settlement areas' at scales of between 1:25,000 and 1:2.5 million. Our knowledge of the density of households from key areas with the most complete archaeological records is upscaled for the regions within these isolines. The results of this procedure are estimations of population density for the early Neolithic (Bandkeramik, 51st century BC) and the Roman period (2nd century AD) for regions with some 10,000 km². A simple statistical/graphical method is developed to analyse the relationship between settlement areas, soils, and precipitation. Taking into account the aspects of preservation of sites and the intensity of archaeological observations, an analysis of patterns of land use shows that in prehistory not all areas suitable for use were in fact incorporated into settlement areas. For prehistory, the idea of a most optimised use of land up to its carrying capacity (as it has been proposed for at least 50 years) can be falsified for specific areas. A large number of empty regions with good ecological conditions but lacking in settlement activity can be discussed as resulting from culture historical processes. As an example, the separation of areas inhabited by groups of different identities is discussed. The amount of used space (in terms of 'settlement area') however, increases from the early Neolithic to the 4th century BC from 5% to more than 40% . The increase between the Neolithic and the Iron Age is understood in terms of technological developments in farming systems. The percentage of areas with suitable conditions actually utilised between the Bandkeramik and Iron Age increases from 31.1% to 67.5% in the area covered by the Geschichtlicher Atlas der Rheinlande, and is much higher still in the Roman period (84.3%). State societies seem to use the land more efficiently compared to non-state systems. This is becoming even clearer on consideration of the intensity of human impact.

Van Leusen 2002, Pattern to process: methodological investigations into the formation and interpretation of spatial patterns in archaeological landscapes

My research has shown that the type of regional archaeological data analysis required by landscape archaeological approaches is an area where both theory and method are still in their infancy. High-level theories about the occurrence, scope, and effects of processes such as centralization, urbanization, and Hellenization/Romanization cannot yet be supported by middle range theory, which itself cannot be developed until the basic business of generating information of sufficient quality about the archaeological record has been tackled. Currently, archaeological data can be made to fit almost any interpretation generated, ultimately, on the basis of the ancient written sources. If we are to escape from this selfreinforcing cycle, research should perhaps no longer be focused on the classical themes generated by culture-historical approaches, but should seek its own proper field of operation. In the area of methods and methodology, I have demonstrated the pervasive influence of systematic research and visibility biases on the patterns that are present in the archaeological data generated over the past 50 years or so. There are mechanisms at work, both in the traditional archaeological interpretation of limited numbers of excavated sites and historical sources, and in the landscape archaeological approach, that cause the systematic undervaluation of unobtrusive remains. The significance of systematic biases in both the coarse site-based data sets resulting from desktop and ‘topographic’ studies and the more detailed site-based or ‘continuous’ data resulting from intensive field surveys has become much clearer as a result of the studies reported here. This should have practical consequences for the ways in which we study the existing archaeological record, plan future landscape archaeological research, and conduct field surveys. Site databases, the traditional starting point for regional archaeological studies, can no longer be taken at face value; rather, they require careful source criticism before being used to support specific arguments and hypotheses about settlement and land use dynamics. My studies have also shown that future data collection, whether through field survey, excavation or other methods, has to take place in a much more methodical manner if we are to produce data that are sufficiently standardized to be successfully exchanged, compared, and interpreted by others – guidelines for which should become embodied in an international standard defining ‘best practice in landscape archaeology’.

Landscape Archaeology in Central Europe

Proceedings of the Prehistoric Society, 2009

Estimations of population density, which consider regional variability, are an important key variable in archaeology as they have consequences not only for the environmental but also for the economical and social domains. In this paper, a ten-step procedure of a consistent group of methods is described which deals with the data required for estimations of population density at different scale levels (from excavation to large-scale distribution maps). For distribution maps, a method is presented by which densities of sites are displayed using optimal isolines. These demarcate so called ‘settlement areas’ at scales of between 1:25,000 and 1:2.5 million. Our knowledge of the density of households from key areas with the most complete archaeological records is upscaled for the regions within these isolines. The results of this procedure are estimations of population density for the early Neolithic (Bandkeramik, 51st century BC) and the Roman period (2nd century AD) for regions with some...