Electrochemically assembled planar hybrid poly(3-methylthiophene)/ZnO nanostructured composites (original) (raw)
Related papers
Hybrid photovoltaic devices from regioregular polythiophene and ZnO nanoparticles composites
Renewable Energy, 2010
The nano size zinc oxide (ZnO) was successfully synthesized at low temperature solution method. The structural characterization, size and distribution of synthesized ZnO particles were performed using Xray diffraction (XRD) and neutron scattering technique. The hybrid polymer-metal oxide bulk heterojunction solar cell has been fabricated by blending of ZnO and regioregular poly(3-hexylthiophene) (P3HT) through solution process and flow coating on the flexible substrate. The decrease in the photoluminescence (PL) emission intensity more than 79% for ZnO:P3HT composites film indicates high charge generation efficiency. The cell shows the V oc and I sc of 0.33 V and 6.5 mA/cm 2 , respectively. The performance and stability of cell were investigated using UV illumination of white light.
Journal of Physical Chemistry B, 2006
We report on the effect of nanoparticle morphology and interfacial modification on the performance of hybrid polymer/zinc oxide photovoltaic devices. We compare structures consisting of poly-3-hexylthiophene (P3HT) polymer in contact with three different types of ZnO layer: a flat ZnO backing layer alone; vertically aligned ZnO nanorods on a ZnO backing layer; and ZnO nanoparticles on a ZnO backing layer. We use scanning electron microscopy, steady state and transient absorption spectroscopies, and photovoltaic device measurements to study the morphology, charge separation, recombination behavior and device performance of the three types of structures. We find that charge recombination in the structures containing vertically aligned ZnO nanorods is remarkably slow, with a half-life of several milliseconds, over 2 orders of magnitude slower than that for randomly oriented ZnO nanoparticles. A photovoltaic device based on the nanorod structure that has been treated with an amphiphilic dye before deposition of the P3HT polymer yields a power conversion efficiency over four times greater than that for a similar device based on the nanoparticle structure. The best ZnO nanorod:P3HT device yields a short circuit current density of 2 mAcm -2 under AM1.5 illumination (100 mW cm -2 ) and a peak external quantum efficiency over 14%, resulting in a power conversion efficiency of 0.20%.
The effect of zinc oxide nanostructure on the performance of hybrid polymer/zinc oxide solar cells
2005
Solar cells fabricated from composites of conjugated polymers with nanostructured metal oxides are gaining interest on account of the stability, low cost and electron transport properties of metal oxides. Zinc oxide (ZnO)/polymer solar cells are promising compared to other metal oxide/polymer combinations, on account of the possibility of low temperature synthesis, as well as the potential for controlling interface morphology through simple processing from solution. Here, we focus on the effect of surface morphology of ZnO films on photovoltaic device performance. We have successfully grown ZnO nanorods standing almost perpendicular to the electrodes on a flat, dense ZnO "backing" layer. We studied structures consisting of a conjugated polymer in contact with three different types of ZnO layer: a flat ZnO backing layer alone; ZnO nanorods on a ZnO backing layer; and ZnO nanoparticles on a ZnO backing layer. We use scanning electron microscopy, steady state and transient absorption spectroscopies and photovoltaic device measurements to study the morphology, charge separation and recombination behaviour and device performance of the three types of structures. We find that charge recombination in the structures containing vertically aligned ZnO nanorods is remarkably slow, with a half life of over 1 ms, over two orders of magnitude slower than for randomly oriented ZnO nanoparticles. A photovoltaic device based on the nanorod structure which has been treated with an ambiphilic dye before deposition of poly(3-hexyl thiophene) (P3HT) polymer shows a power conversion efficiency over four times greater than for a similar device based on the nanoparticle structure. The best ZnO nanorods: P3HT device yields a short circuit current density of 2 mAcm-2 under AM1.5 illumination (100mWcm-2) and peak external quantum efficiency over 14%, resulting in a power conversion efficiency of 0.20%.
The Journal of Physical Chemistry C, 2014
Photoinduced charge separation at hybrid organic−inorganic interfaces is poorly understood and challenging to control. We investigate charge separation at a model system of ZnO/poly(3-hexylthiophene) (P3HT) and employ Sr doping of ZnO and phenyl-C61-butyric acid (PCBA) self-assembled modification to study and enhance the charge separation efficiency. We find that doping alone lowers the efficiency of charge separation due to the introduction of defect states at the oxide surface. However, with the combination of doping and molecular modification, charge separation efficiency is significantly enhanced due to the passivation of interfacial traps and improved modifier coverage. This demonstrates a complex noncumulative effect of doping and surface modification and shows that with the correct choice of metal oxide dopant and organic modifier, a poorly performing hybrid interface can be turned into an efficient one.
Physical Chemistry Chemical Physics, 2011
1-Dimensional nanostructured ZnO electrodes have been demonstrated to be potentially interesting for their application in solar cells. Herein, we present a novel procedure to control the ZnO nanowire optoelectronic properties by means of surface modification. The nanowire surface is functionalized with ZnO nanoparticles in order to provide an improved contact to the photoactive P3HT:PCBM film that enhances the overall power conversion efficiency of the resulting solar cell. Charge extraction and transient photovoltage measurements have been used to successfully demonstrate that the surface modified nanostructured electrode contributes in enhancing the exciton dissociating ratio and in enlarging the charge lifetime as a consequence of a reduced charge recombination. Under AM1.5G illumination, all these factors contribute to a considerably large increase in photocurrent yielding unusually high conversion efficiencies over 4% and external quantum efficiencies of 87% at 550 nm for commercially available P3HT:PCBM based solar cells. The same approach might be equally used for polymeric materials under development to overcome the record reported efficiencies.
Photovoltaic properties of ZnO nanoparticle based solid polymeric photoelectrochemical cells
AIP Conference Proceedings, 2010
In this work, we report optical and photovoltaic properties of ZnO based solid polymeric photoelectrochemical (PEC) cell. In this device construction, film of ZnO nanoparticle (NP) has been sandwiched between ITO and LiClO 4 -PEO solid electrolyte. ZnO NP has been used as photo-anode and the electrolyte LiClO 4 has been dissolved in a solid solution polyethylene oxide that makes the device lightweight and portable. The charge transfer is performed by Li + and ClO 4 ions which serve the purpose of a redox couple in a conventional dye sensitize solar cell (DSSC). Short Circuit Current (J SC ) shows maximum when the ZnO/ITO interface has been illuminated by a UV light (350 ± 15 nm) passing through the transparent ITO glass substrate. J SC and Open Circuit Voltage (V OC ) of the best performing device are found to be 7 µA/cm 2 and 0.24 V respectively under white light of intensity 15 mW/cm 2 .
Superior photoelectrochemical properties of ZnO nanorods/poly(3-hexylthiophene) hybrid photoanodes
Chemical Physics, 2017
Photoelectrochemical properties of ZnO nanorods (ZnO NRs) and poly(3-hexylthiophene) (P3HT) polymer hybrid photoanodes have been studied. The hybrid photoanodes demonstrated higher photoconversion efficiency, incident photon to current conversion efficiency (IPCE) and lower interfacial resistance compared to pristine ZnO nanorods and P3HT based electrodes. The origin of superior photoelectrochemical properties of ZnO/P3HT photoanodes has been explained using carrier transport mechanism at semiconductor/electrolyte junction. The stability of ZnO NRs/P3HT photoanode has been demonstrated.
Fabrication of organic photovoltaic cells with double-layer ZnO structure
Solar Energy Materials and Solar Cells, 2009
The fabrication process of a photovoltaic cell with a structure of indium-tin-oxide (ITO)/double ZnO/C 60 / poly(3-hexylthiophene) (PAT6)/Ag has been investigated. The C 60 /PAT6 heterojunction of this cell was fabricated by spin-coating a chloroform solution of PAT6 onto the C 60 thin film formed on double-layer ZnO-coated ITO. The fabrication of this double-layer ZnO was a new method, which was a composite of a sputtered ZnO layer and oriented zinc oxide nanograins layer fabricated at low temperature (343 K). Insertion of the double-layer ZnO in the photovoltaic cells produced enhanced performance with the power conversion efficiency of 1.31% under AM1.5 illumination.