Observing the surface of Venus after VIRTIS on VEX: new concepts and laboratory work (original) (raw)

Infrared Remote Sensing and Instrumentation XXI, 2013

Abstract

ABSTRACT The permanent cloud cover of Venus prohibits observation of the surface with traditional imaging techniques most of the visible spectral range. Venus' CO2 atmosphere is transparent in small spectral windows near 1 micron. These windows have been successfully used from ground observers, during the flyby of the Galileo mission at Jupiter and most recently by the VMC and VIRTIS instruments on the ESA VenusExpress spacecraft. Studying surface composition based on only a small number of spectral channels in a very narrow spectral range is very challenging. The task is further complicated by the fact that Venus has an average surface temperature of 460°C. Spectral signatures of minerals are affected by temperature and therefore a comparison with mineral spectra obtained at room temperature can be misleading. We report here about first laboratory measurements of Venus analog materials obtained at Venus surface temperatures. The spectral signatures show clear temperature dependence. Based on the experience gained from using the VIRTIS instrument to observe the surface of Venus combined with the high temperature laboratory experiments we have developed the concept for the Venus Emissivity Mapper (VEM). VEM is a multi-spectral mapper dedicated to the task of multi-spectral mapping the surface of Venus. VEM imposes minimal requirements on the spacecraft and mission design and can therefore added to any future Venus mission. Ideally the VEM instrument is combined with a high resolution radar mapper to provide accurate topographic data.

R. Nadalini hasn't uploaded this paper.

Create a free Academia account to let R. know you want this paper to be uploaded.

Ask for this paper to be uploaded.