Genomic Characterization of the Guillain-Barre Syndrome-Associated Campylobacter jejuni ICDCCJ07001 Isolate (original) (raw)

Involvement of a Plasmid in Virulence of Campylobacter jejuni 81-176

Infection and Immunity, 2000

Campylobacter jejuni strain 81-176 contains two, previously undescribed plasmids, each of which is approximately 35 kb in size. Although one of the plasmids, termed pTet, carries a tetO gene, conjugative transfer of tetracycline resistance to another strain of C. jejuni could not be demonstrated. Partial sequence analysis of the second plasmid, pVir, revealed the presence of four open reading frames which encode proteins with significant sequence similarity to Helicobacter pylori proteins, including one encoded by the cag pathogenicity island. All four of these plasmid-encoded proteins show some level of homology to components of type IV secretion systems. Mutation of one of these plasmid genes, comB3, reduced both adherence to and invasion of INT407 cells to approximately one-third that seen with wild-type strain 81-176. Mutation of comB3 also reduced the natural transformation frequency. A mutation in a second plasmid gene, a virB11 homolog, resulted in a 6-fold reduction in adherence and an 11-fold reduction in invasion compared to the wild type. The isogenic virB11 mutant of strain 81-176 also demonstrated significantly reduced virulence in the ferret diarrheal disease model. The virB11 homolog was detected on plasmids in 6 out of 58 fresh clinical isolates of C. jejuni, suggesting that plasmids are involved in the virulence of a subset of C. jejuni pathogens.

DNA Sequence and Mutational Analyses of the pVir Plasmid of Campylobacter jejuni 81-176

Infection and Immunity, 2002

The circular pVir plasmid of Campylobacter jejuni strain 81-176 was determined to be 37,468 nucleotides in length with a G؉C content of 26%. A total of 83% of the plasmid represented coding information, and all but 2 of the 54 predicted open reading frames were encoded on the same DNA strand. There were seven genes on the plasmid in a continguous region of 8.9 kb that encoded orthologs of type IV secretion proteins found in Helicobacter pylori, including four that have been described previously (Infect. Immun. 68:4384-4390, 2000). There were seven other pVir-encoded proteins that showed significant similarities to proteins encoded by the plasticity zones of either H. pylori J99 or 26695. Mutational analyses of 19 plasmid genes identified 5 additional genes that affect in vitro invasion of intestinal epithelial cells. These included one additional gene encoding a component of a type IV secretion system, an ortholog of Cj0041 from the chromosome of C. jejuni NCTC 11168, two Campylobacter plasmid-specific genes, and an ortholog of HP0996 from the plasticity zone of H. pylori 26695.

Plasmids and serogroups in Campylobacter jejuni

APMIS, 1989

For epidemiological purposes identification of Camp.vlobacter strains is usually based on surface antigen characteristics. Two different systems, one for heat-stable (HS) and one for heat-labile (HL) antigen have dominated. In earlier studies we found a great variability in the two antigen systems. The aim of the present investigation was to analyse the frequency of plasmids in Campylobacter strains in the light of their possible use as an epidemiological tool as well as the relation between the presence of plasmids and surface antigens (HS and HL). Two hundred and forty-two strains from the same number of patients with diarrhea were analysed. In 70 (28.9%) palsmid(s) were found, in general one or two. Most of the plasmids were found in the molecular weight interval between 21-40 Md. There was no relation between the presence or size of plasmids and serogroup. We conclude that plasmid determination can be used as a complement to serotyping in epidemiological studies.

Identification of DNA sequence variation in Campylobacter jejuni

2006

Background: Campylobacter jejuni is the predominant cause of antecedent infection in post-infectious neuropathies such as the Guillain-Barré (GBS) and Miller Fisher syndromes (MFS). GBS and MFS are probably induced by molecular mimicry between human gangliosides and bacterial lipo-oligosaccharides (LOS). This study describes a new C. jejuni-specific high-throughput AFLP (htAFLP) approach for detection and identification of DNA polymorphism, in general, and of putative GBS/MFS-markers, in particular. Results: We compared 6 different isolates of the "genome strain" NCTC 11168 obtained from different laboratories. HtAFLP analysis generated approximately 3000 markers per stain, 19 of which were polymorphic. The DNA polymorphisms could not be confirmed by PCR-RFLP analysis, suggesting a baseline level of 0.6% AFLP artefacts. Comparison of NCTC 11168 with 4 GBS-associated strains revealed 23 potentially GBS-specific markers, 17 of which were identified by DNA sequencing. A collection of 27 GBS/MFS-associated and 17 enteritis control strains was analyzed with PCR-RFLP tests based on 11 of these markers. We identified 3 markers, located in the LOS biosynthesis genes cj1136, cj1138 and cj1139c, that were significantly associated with GBS (P = 0.024, P = 0.047 and P < 0.001, respectively). HtAFLP analysis of 13 highly clonal South African GBS/MFS-associated and enteritis control strains did not reveal GBS-specific markers. Conclusion: This study shows that bacterial GBS markers are limited in number and located in the LOS biosynthesis genes, which corroborates the current consensus that LOS mimicry may be the prime etiologic determinant of GBS. Furthermore, our results demonstrate that htAFLP, with its high reproducibility and resolution, is an effective technique for the detection and subsequent identification of putative bacterial disease markers.

Characterization of Two Campylobacter jejuni Strains for Use in Volunteer Experimental-Infection Studies

Infection and Immunity, 2008

The development of vaccines against Campylobacter jejuni would be facilitated by the ability to perform phase II challenge studies. However, molecular mimicry of the lipooligosaccharide (LOS) of most C. jejuni strains with human gangliosides presents safety concerns about the development of Guillain-Barré syndrome. Clinical isolates of C. jejuni that appeared to lack genes for the synthesis of ganglioside mimics were identified by DNA probe analyses. Two clinical isolates from Southeast Asia (strains BH-01-0142 and CG8421) were determined to express the LOS type containing N-acetyl quinovosamine. No ganglioside structures were observed to be present in the LOSs of these strains, and pyrosequence analyses of the genomes of both strains confirmed the absence of genes involved in ganglioside mimicry. The capsule polysaccharide (CPS) of BH-01-0142 was determined to be composed of galactose (Gal), 6-deoxy-ido-heptose, and, in smaller amounts, D-glycero-D-ido-heptose, and the CPS of CG8421 was observed to contain Gal, 6-deoxy-altro-heptose, N-acetyl-glucosamine, and minor amounts of 6-deoxy-3-O-Me-altroheptose. Both CPSs were shown to carry O-methyl-phosphoramidate. The two genomes contained strain-specific zones, some of which could be traced to a plasmid origin, and both contained a large chromosomal insertion related to the CJEI3 element of C. jejuni RM1221. The genomes of both strains shared a high degree of similarity to each other and, with the exception of the capsule locus of CG8421, to the type strain of the HS3 serotype, TGH9011.

Characterization of two Campylobacter jejuni strains for use in volunteer experimental-infection studies

Infect Immun, 2008

The development of vaccines against Campylobacter jejuni would be facilitated by the ability to perform phase II challenge studies. However, molecular mimicry of the lipooligosaccharide (LOS) of most C. jejuni strains with human gangliosides presents safety concerns about the development of Guillain-Barré syndrome. Clinical isolates of C. jejuni that appeared to lack genes for the synthesis of ganglioside mimics were identified by DNA probe analyses. Two clinical isolates from Southeast Asia (strains BH-01-0142 and CG8421) were determined to express the LOS type containing N-acetyl quinovosamine. No ganglioside structures were observed to be present in the LOSs of these strains, and pyrosequence analyses of the genomes of both strains confirmed the absence of genes involved in ganglioside mimicry. The capsule polysaccharide (CPS) of BH-01-0142 was determined to be composed of galactose (Gal), 6-deoxy-ido-heptose, and, in smaller amounts, D-glycero-D-ido-heptose, and the CPS of CG8421 was observed to contain Gal, 6-deoxy-altro-heptose, N-acetyl-glucosamine, and minor amounts of 6-deoxy-3-O-Me-altroheptose. Both CPSs were shown to carry O-methyl-phosphoramidate. The two genomes contained strain-specific zones, some of which could be traced to a plasmid origin, and both contained a large chromosomal insertion related to the CJEI3 element of C. jejuni RM1221. The genomes of both strains shared a high degree of similarity to each other and, with the exception of the capsule locus of CG8421, to the type strain of the HS3 serotype, TGH9011.

Genetic characterization of Campylobacter jejuni O:41 isolates in relation with Guillain-Barré syndrome

Journal of clinical microbiology, 2000

Campylobacter jejuni O:41 strains are found in association with Guillain-Barré syndrome in South Africa. Strains of this serotype collected over 17 years were characterized by amplified fragment length polymorphism and flagellin typing to determine their clonal nature. Despite minor variation in GM1 expression, all of the strains were genetically indistinguishable, indicating that they are representative of a genetically stable clone.

Detection of cdtA, cdtB, and cdtC genes in Campylobacter jejuni by multiplex PCR

International Journal of Medical Microbiology, 2006

A multiplex PCR was developed for simultaneous detection of the cytolethal distending toxin (cdt) genes of Campylobacter jejuni. Three primer pairs targeting each one of the cdtA, cdtB and cdtC genes were designed and combined in the same PCR reaction. The assay was evaluated with 100 C. jejuni strains recovered from humans and animals and it was found to be rapid and specific. Two isolates presented several deletions affecting both cdtA and cdtB genes. High prevalence (98%) of the three cdt genes was found among isolates of different geographic origins.