Food webs and biological control. A review of molecular tools used to reveal trophic interactions in agricultural systems Food webs and biological control. A review of molecular tools used to reveal trophic interactions in agricultural systems (original) (raw)
Related papers
Modern monocultural agro-ecosystems can be perceived as a simplification of natural ecosystems, where a single plant species is usually grown over vast areas. In these systems, it has historically been assumed that the concept of a food chain can describe the relationships between an insect pest and a single biocontrol agent. In reality, multiple potentially complex ecological interactions are involved, and these comprise food webs. However, identifying, analysing and quantifying the relative strengths of these multi-trophic interactions are very difficult using orthodox methods such as dissection and subsequent visual gut-content identification. An emerging field of study using molecular tools to analyse prey DNA in predators as well as parasitoid DNA within their hosts can now begin to address these impediments and help to better understand multi-trophic dynamics and improve biological control. In this article, we review the scientific literature published between 2000 and 2015 related to the use of molecular tools to analyse trophic interactions in agroecosystems in the context of biological control, using the ISI Web of Science search engine. A total of 213 articles were found and a steady increase in the volume of this literature occurred over the period studied. Based on the analysis of those publications, we propose future avenues in which advanced molecular tools can contribute to a mechanistic understanding of biological control, suggesting how this approach could help design agricultural systems based on agroecological techniques.
Insects, 2021
Simple Summary With increasing human populations and the need for ecosystem services to work in synergy with the production of specialty crops, the maintenance of biodiversity is becoming increasingly important. The aims of this study were to review the current literature employing molecular analysis to reveal the roles of species in providing biological control in agricultural systems. Decrypting the trophic networks between biological control agents and agricultural pests is essential to build eco-friendly strategies that promote the natural management of pests before any mediations, such as chemical control strategies, are required. It was found, during the review process, that our understanding of biological control communities is lacking in many agricultural systems, including common fruit and vegetable production, both in terms of what species are doing for crop production, and how various environmental challenges (i.e., land-use and habitat management concepts, such as wildfl...
Molecular detection of trophic links in a complex insect host-parasitoid food web
Molecular Ecology Resources, 2011
Previously, host-parasitoid links have been unveiled almost exclusively by time-intensive rearing, while molecular methods were used only in simple agricultural host-parasitoid systems in the form of species-specific primers. Here, we present a general method for the molecular detection of these links applied to a complex caterpillar-parasitoid food web from tropical rainforest of Papua New Guinea. We DNA barcoded hosts, parasitoids and their tissue remnants and matched the sequences to our extensive library of local species. We were thus able to match 87% of host sequences and 36% of parasitoid sequences to species and infer subfamily or family in almost all cases. Our analysis affirmed 93 hitherto unknown trophic links between 37 host species from a wide range of Lepidoptera families and 46 parasitoid species from Hymenoptera and Diptera by identifying DNA sequences for both the host and the parasitoid involved in the interaction. Molecular detection proved especially useful in cases where distinguishing host species in caterpillar stage was difficult morphologically, or when the caterpillar died during rearing. We have even detected a case of extreme parasitoid specialization in a pair of Choreutis species that do not differ in caterpillar morphology and ecology. Using the molecular approach outlined here leads to better understanding of parasitoid host specificity, opens new possibilities for rapid surveys of food web structure and allows inference of species associations not already anticipated.
2017
The lack of understanding of complex food-web interactions has been a major gap in the history of biological control. In particular, a better understanding of the functioning of pest food-webs and how they vary between native and invaded geographical ranges is of prime interest for biological control research and associated integrated pest management. Technical limitations associated with the deciphering of complex food-webs can now be largely overcome by the use of high throughput DNA sequencing techniques such as Illumina MiSeq. We tested the efficiency of this next generation sequencing technology in a metabarcoding approach, to study aphid food-webs using the cabbage aphid as model. We compared the variations in structure and composition of aphid food-webs in the species' native range (United Kingdom, UK) and in an invaded range (New Zealand, NZ). We showed that Illumina MiSeq is a well suited technology to study complex aphid food-webs from aphid mummies. We found an unexpectedly high top down pressure in the NZ cabbage aphid food-web, which coupled to a large ratio of consumer species / prey ‡, § § | ¶ #, ‡ © Lefort M et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. species and a lack of potential inter-specific competition between primary parasitoids, could cause the NZ food-web to be more vulnerable than the UK one. This study also reports for the first time the occurrence of a new hyperparasitoid species in NZ, as well as new associations between hyperparasitoids parasitoids and the cabbage aphid in this country. We conclude that the complexity of aphid food-webs in agricultural systems could often be underestimated, particularly at higher trophic levels; and that the use of high throughput DNA sequencing tools, could largely help to overcome this impediment.
The lack of understanding of complex food-web interactions has been a major gap in the history of biological control. In particular, a better understanding of the functioning of pest food-webs and how they vary between native and invaded geographical ranges is of prime interest for biological control research and associated integrated pest management. Technical limitations associated with the deciphering of complex food-webs can now be largely overcome by the use of high throughput DNA sequencing techniques such as Illumina MiSeq. We tested the efficiency of this next generation sequencing technology in a metabarcoding approach, to study aphid food-webs using the cabbage aphid as model. We compared the variations in structure and composition of aphid food-webs in the species' native range (United Kingdom, UK) and in an invaded range (New Zealand, NZ). We showed that Illumina MiSeq is a well suited technology to study complex aphid food-webs from aphid mummies. We found an unexpectedly high top down pressure in the NZ cabbage aphid food-web, which coupled to a large ratio of consumer species / prey ‡, § § | ¶ #, ‡
The ecosystem service of insect pest regulation by natural enemies, such as primary parasitoids, may be enhanced by the presence of uncultivated, semi-natural habitats within agro-ecosystems, although quantifying such host-parasitoid interactions is difficult. Here, we use rRNA 16S gene sequencing to assess both the level of parasitism by Aphidiinae primary parasitoids and parasitoid identity on a large sample of aphids collected in cultivated and uncultivated agricultural habitats in Western France. We used these data to construct ecological networks to assess the level of compartmentalization between aphid and parasitoid food webs of cultivated and uncultivated habitats. We evaluated the extent to which uncultivated margins provided a resource for parasitoids shared between pest and nonpest aphids. We compared the observed quantitative ecological network described by our molecular approach to an empirical qualitative network based on aphid-parasitoid interactions from traditional rearing data found in the literature. We found that the molecular network was highly compartmentalized and that parasitoid sharing is relatively rare between aphids, especially between crop and noncrop compartments. Moreover, the few cases of putative shared generalist parasitoids were questionable and could be due to the lack of discrimination of cryptic species or from intraspecific host specialization. Our results suggest that apparent competition mediated by Aphidiinae parasitoids is probably rare in agricultural areas and that the contribution of field margins as a source of these biocontrol agents is much more limited than expected. Further large-scale (spatial and temporal) studies on other crops and noncrop habitats are needed to confirm this.
DNA Metabarcoding as a Tool for Disentangling Food Webs in Agroecosystems
Insects, 2020
Better knowledge of food webs and related ecological processes is fundamental to understanding the functional role of biodiversity in ecosystems. This is particularly true for pest regulation by natural enemies in agroecosystems. However, it is generally difficult to decipher the impact of predators, as they often leave no direct evidence of their activity. Metabarcoding via high-throughput sequencing (HTS) offers new opportunities for unraveling trophic linkages between generalist predators and their prey, and ultimately identifying key ecological drivers of natural pest regulation. Here, this approach proved effective in deciphering the diet composition of key predatory arthropods (nine species.; 27 prey taxa), insectivorous birds (one species, 13 prey taxa) and bats (one species; 103 prey taxa) sampled in a millet-based agroecosystem in Senegal. Such information makes it possible to identify the diet breadth and preferences of predators (e.g., mainly moths for bats), to design a ...
Oecologia, 2005
White grubs (larvae of Coleoptera: Scarabaeidae) are abundant in below-ground systems and can cause considerable damage to a wide variety of crops by feeding on roots. White grub populations may be controlled by natural enemies, but the predator guild of the European species is barely known. Trophic interactions within soil food webs are difficult to study with conventional methods. Therefore, a polymerase chain reaction (PCR)-based approach was developed to investigate, for the first time, a soil insect predator-prey system. Can, however, highly sensitive detection methods identify carrion prey in predators, as has been shown for fresh prey? Fresh Melolontha melolontha (L.) larvae and 1-to 9-day-old carcasses were presented to Poecilus versicolor Sturm larvae. Mitochondrial cytochrome oxidase subunit I fragments of the prey, 175, 327 and 387 bp long, were detectable in 50% of the predators 32 h after feeding. Detectability decreased to 18% when a 585 bp sequence was amplified. Meal size and digestion capacity of individual predators had no influence on prey detection. Although prey consumption was negatively correlated with cadaver age, carrion prey could be detected by PCR as efficiently as fresh prey irrespective of carrion age. This is the first proof that PCR-based techniques are highly efficient and sensitive, both in fresh and carrion prey detection. Thus, if active predation has to be distinguished from scavenging, then additional approaches are needed to interpret the picture of prey choice derived by highly sensitive detection methods.
Insect–Plant Food Webs Could Provide New Clues for Pest Management
Environmental Entomology, 1999
Food webs describe feeding interactions in a community. Parasitoid food webs concentrate on such interactions among plants, phytophagous insects, and their parasitoids. Studies of them have not been applied to agricultural systems, despite the widespread use of parasitoids in insect pest management programs. This article compares parasitoid food webs from a native and a cultivated habitat in the same region, focusing on aspects relevant to pest management and seeking to elicit further interest in this type of study. The study system involves Agromyzid leaf miners, their plant hosts and parasitoids, from Có rdoba (central Argentina). Inspection of the webs suggests interesting possibilities for detecting useful parasitoids and plant-alternative host-parasitoid interactions.