Individuals with Autism: Analysis of the First Interaction with Nao Robot Based on Their Proprioceptive and Kinematic Profiles (original) (raw)

2015, Advances in Intelligent Systems and Computing

Our research aims to develop a new personalized social interaction model between a humanoid robot and an individual suffering of Autistic Spectrum Disorder (ASD), so as to enhance his/her social and communication skills. In order to define individual's profile, we posit that the individual's reliance to proprioceptive and kinematic visual cues will affect the way an individual suffering of ASD interacts with a social agent. We describe a first experiment that defines each participant's perceptive-cognitive and sensorimotor profile with respect to the integration of visual inputs, thanks to the Sensory Profile questionnaire and an experimental set-up. We succeeded to form 3 groups with significant different behavioural responses inside our subject pool formed by 7 adults and 6 children with ASD. In a second experiment, we presented the Nao robot to all of our participants. We video-analysed their behaviours and compared them to the profiles we defined. In view of our results, this first interaction confirmed our hypothesis: participants with a weak proprioceptive integration and strong visual dependency had more successful interaction than participants with an overreliance on proprioceptive input and hypo-reactivity to visual cues.