PLUME investigates South Pacific Superswell (original) (raw)

Upper-mantle flow beneath French Polynesia from shear wave splitting

Geophysical Journal International, 2007

Upper-mantle flow beneath the South Pacific is investigated by analysing shear wave splitting parameters at eight permanent long-period and broad-band seismic stations and 10 broad-band stations deployed in French Polynesia from 2001 to 2005 in the framework of the Polynesian Lithosphere and Upper Mantle Experiment (PLUME). Despite the small number of events and the rather poor backazimuthal coverage due to the geographical distribution of the natural seismicity, upper-mantle seismic anisotropy has been detected at all stations except at Tahiti where two permanent stations with 15 yr of data show an apparent isotropy. The median value of fast polarization azimuths (N67.5 • W) is parallel to the present Pacific absolute plate motion direction in French Polynesia (APM: N67 • W). This suggests that the observed SKS fast polarization directions result mainly from olivine crystal preferred orientations produced by deformation in the sublithospheric mantle due to viscous entrainment by the moving Pacific Plate and preserved in the lithosphere as the plate cools. However, analysis of individual measurements highlights variations of splitting parameters with event backazimuth that imply an actual upper-mantle structure more complex than a single anisotropic layer with horizontal fast axis. A forward approach shows that a two-layer structure of anisotropy beneath French Polynesia better explains the splitting observations than a single anisotropic layer. Secondorder variations in the measurements may also indicate the presence of small-scale lateral heterogeneities. The influence of plumes or fracture zones within the studied area does not appear to dominate the large-scale anisotropy pattern but may explain these second-order splitting variations across the network.

Mapping the lowermost mantle using core-reflected shear waves

Journal of Geophysical Research, 1994

A map of laterally varying D-double prime velocities is obtained for the region from 50 deg S to 50 deg N in latitude and 70 deg E to 190 deg E in longitude. Velocities are found using an analysis of the differential travel time residuals from 481 ScS-S and 266 sScS-sS phase pairs. The long-period data are taken from the Global Digital Seismograph Network digital waveform catalog for the time period of January 1980 to March 1987. Each differential travel time is found by a cross correlation of the S phase ground displacement, corrected to simulate differential attenuation, with all following phases. Travel times are corrected for ellipticity and mantle heterogeneity outside of their D-double prime paths, and the remaining residuals are interpreted as the result of D-double prime heterogeneity. Ray-tracing tests are made to check the validity of converting travel time residuals into velocity path anomalies. The resulting map reveals significant long-wavelength D-double prime structure including a 3% low-velocity region beneath northeastern Indonesia, surrounded by three identified high-velocity zones beneath northwestern Pacifica (+4%), Southeast Asia (+3%), and Australia (+3-5%). This structure is of continent/ocean spatial scales and is most likely created by dynamic processes dominant in the lower mantle. The low-velocity region may have both chemical and thermal origins and is very possibly the site of an incipient lower mantle plume where mature D-double prime rock which has been heated by the core has become gravitationally unstable and begun to rise. A chemical component possibly exists as a chemical boundary layer is dragged laterally toward the plume site, much the way continents are dragged toward subduction zones. The high-velocity zones possibly result from the downward convection of cold lower mantle plumes, which pond at the core-mantle boundary. These seismic anomalies may also contain a chemical signature from faster iron-poor materials brought down through the lower mantle or the additional presence of SiO2 stishovite, perhaps in its higher-pressure polymorph.

The deep structure of the Australian continent from surface wave tomography

1999

We present a new model of 3-D variations of shear wave speed in the Australian upper mantle, obtained from the dispersion of fundamental and higher-mode surface waves. We used nearly 1600 Rayleigh wave data from the portable Ž. arrays of the SKIPPY project and from permanent stations from AGSO, IRIS and GEOSCOPE. AGSO data have not been used before and provide better data coverage of the Archean cratons in western Australia. Compared to previous studies we improved the vertical parameterization, the weighting scheme that accounts for variations in data quality and reduced the influence of epicenter mislocation on velocity structure. The dense sampling by seismic waves provides for unprecedented resolution of continental structure, but the wave speed beneath westernmost Australia is not well constrained. Global Ž. compilations of geological and seismological data using regionalizations based on tectonic behavior or crustal age suggest a correlation between crustal age and the thickness and composition of the continental lithosphere. However, the age and the tectonic history of crustal elements vary on wavelengths much smaller than have been resolved with global seismological studies. Using our regional upper mantle model we investigate how the seismic signature of tectonic units changes with increasing depth. At large wavelengths, and to a depth of about 200 km, the inferred velocity anomalies corroborate the global pattern and display a progression of wave speed with crustal age: slow wave propagation prevails beneath the Paleozoic fold belts in eastern Australia and wave speeds increase westward across the Proterozoic and reach a maximum in the Archean cratons. The high wave speeds associated with Precambrian shields extend beyond the Tasman Line, which marks the eastern limit of Proterozoic outcrop. This suggests that parts of the Paleozoic fold belts are underlain by Proterozoic lithosphere. We also infer that the North Australia craton extends offshore into Papua New Guinea and beneath the Indian Ocean. For depths in excess of 200 km a regionalization with smaller units reveals that some tectonic subregions of Proterozoic age are marked by pronounced velocity highs to depths exceeding 300 km, but others do not and, surprisingly, the Archean units do not seem to be marked by such a thick high wave speed structure either. The Precambrian cratons that lack a thick high wave speed ''keel'' are located near passive margins, suggesting that convective processes associated with continental break-up may have destroyed a once present tectosphere. Our study suggests that deep lithospheric structure varies as much within domains of similar crustal age as between units of different ages, which hampers attempts to find a unifying relationship between seismic signature and lithospheric age.

South Pacific Upper mantle surface waves

Montagner, J.P. and Jobert, N., 1981. Investigation of upper mantle structure under young regions of the southeast Pacific using long-period Rayleigh waves. Phys. Earth Planet. Inter., 27: 206-222.

Upper mantle structure of the Tonga-Lau-Fiji region from Rayleigh wave tomography

We investigate the upper mantle seismic structure in the Tonga-Lau-Fiji region by jointly fitting the phase velocities of Rayleigh waves from ambient-noise and two-plane-wave tomography. The results suggest a wide low-velocity zone beneath the Lau Basin, with a minimum SV-velocity of about 3.7 +-0.1 km/s, indicating upwelling hot asthenosphere with extensive partial melting. The variations of velocity anomalies along the Central and Eastern Lau Spreading Centers suggest varying mantle porosity filled with melt. In the north where the spreading centers are distant from the Tonga slab, the inferred melting commences at about 70 km depth, and forms an inclined zone in the mantle, dipping to the west away from the arc. This pattern suggests a passive decompression melting process supplied by the Australian plate mantle from the west. In the south, as the supply from the Australian mantle is impeded by the Lau Ridge lithosphere, flux melting controlled by water from the nearby slab dominates in the back-arc. This source change results in the rapid transition in geochemistry and axial morphology along the spreading centers. The remnant Lau Ridge and the Fiji Plateau are characterized by a 60–80 km thick lithosphere underlain by a low-velocity asthenosphere. Our results suggest the removal of the lithosphere of the northeastern Fiji Plateau-Lau Ridge beneath the active Taveuni Volcano. Azimuthal anisotropy shows that the mantle flow direction rotates from trench-perpendicular beneath Fiji to spreading-perpendicular beneath the Lau Basin, which provides evidence for the southward flow of the mantle wedge and the Samoan plume.

Upper mantle Anisotropy from Surface Wave studies

2008

Major advances in Structural Seismology during the last twenty years, are related to the emergence and development of more and more sophisticated 3D imaging techniques, usually named seismic tomography, at different scales from local to global. Progress has been made possible by the rapid developments in seismic instrumentation and by the extensive use of massive computation facilities. The scope of this chapter is limited to the tomographic elastic structure of the upper mantle. In order to obtain a good spatial coverage of this part of the Earth, it is necessary to make use of dispersive properties of surface waves. Most global tomographic models are still suffering severe limitations in lateral resolution, due to the imperfect data coverage, and to crude theoretical approximations. It is usually assumed that the propagating elastic medium is isotropic, which is a poor approximation. It is shown in this chapter how to take account of anisotropy of Earth’s materials and a complete ...

Waveform inversion of surface wave data: test of a new tool for systematic investigation of upper mantle structures

Geophysical Journal International, 2007

In most tomographic inversion of surface wave data, the long-period seismograms are first interpreted in terms of dispersion and/or attenuation curves before performing an inversion in terms of laterally and depth-varying properties. An alternative to this approach is to perform a direct waveform inversion or, as in Cara & LCvSque (1987), to use another set of secondary observables built up from the seismograms. In this paper, we systematically test with actual Rayleigh wave records this latter technique by considering laterally homogeneous models. We use for this purpose a set of recent long-period digital records from the Geoscope station Dumont d'urville, Antarctica, for surficial events in the south Indian Ocean and the southeast Pacific Ocean, and for intermediate-depth events in the Vanuatu and Kermadec trenches. In addition to the obvious advantages of being able to deal with situations where overtones are present in the seismogram, it is found that the waveform inversion procedure allows us to reach a better depth resolution than in classical inversion of dispersion curves, even when only the fundamental mode is present in the seismogram. Quite good resolution is obtained to depth as large as 300km for S velocity when using surficial events located at a few thousand kilometres from the station, while classical surface wave studies do not allow us to resolve S velocity at depth larger than 150 km for these events. When intermediatedepth events are used at distances of about 5000 km, the presence of overtones in the signal allows us to get resolution to depth as large as 600 km for S velocity. Poorer resolution is obtained in both situations for the attenuation factor. S velocity appears furthermore to be more robust than attenuation at depth where good resolution is achieved. Due to the great sensitivity of surface wave amplitude to departure from the assumption of lateral homogeneity, more sophisticated direct modelling would be required to get more confidence in the inverted attenuation models.

A regional study of mantle velocity variations beneath eastern Australia and the southwestern Pacific using short-period recordings of P, S, PcP, ScP and ScS waves produced by Tongan deep earthquakes

Physics of the Earth and Planetary Interiors, 1980

Deep earthquakes located in the Tonga-Kermadec region produce exceptionally clear and sharp short-period P, S, PeP, ScP, and ScS phases which are recorded at many stations at distances of less than 60°. The data used in this study are produced by short-period stations located in oceanic-type regions (Fiji and New Caledonia), a mobile continental region (eastern Australia) and a shield region (central Australia). Differential travel-time residuals of the above phases at these stations are investigated to determine the contribution to the differential residuals from: (1) the upper part of the mantle (S-P residuals); (2) the core-to-station portion of the mantle (ScS-ScP residuals); and (3) the hypocenter-to core portion of the mantle (ScP-PcP residuals). The use of differential travel-time residuals considerably reduces near-station effects and effects due to inaccurate determination of the source parameters, and hence the results can be interpreted as due to variations along the propagation paths. The results show that (S-P) residuals from phases traveling along event-to-station paths are about 7 s smaller at the shield station than at the oceanic stations. This correlation with surface tectonic environments is equally strong for the (ScS-ScP) residuals, with the shield/oceanic station difference being about 4 s. Moreover, the data suggest that this correlation between differential residuals and surface tectonic environments is caused by variations in shear velocity within the upper part of the mantle. However, the data cannot uniquely resolve the required depth of these variations within the mantle. For example, if the shear velocity variations extend to a depth of 400 km beneath the recording stations, then the average shear velocity difference between shield-and oceanic-type environments is about 4%. However, if the variations extend only to a depth of 200 km, this difference is more than 8%. (ScP-PcP) and (ScS-PcS) residuals vary from about +1 to about +4 sat the different stations, apparently because of compressional velocity variations in the mantle along the Pc path. Ifthe variation in compressional velocity within the mantle below a depth of about 600 km is about 10% and occurs near the source region, these results suggest that, in the vicinity of deep earthquake zones, variations in compressional velocity extend to a depth of about 1000 km. However, these results can equally be explained by a 1% variation in compressional velocity, evenly distributed along the entire Pc path. An estimate ofQ determined from the observed predominant frequency of ScS waves, as recorded at the shield station, suggests that the average <Q~>of the mantle beneath about 600 km is about 1050 at frequencies of about 1 Hz.

Origin of Lateral Heterogeneities in the Upper Mantle Beneath South-east Australia from Seismic Tomography

The Earth's Heterogeneous Mantle, 2015

We use teleseismic body wave tomography to reveal anomalous P wave velocity variations in the upper mantle beneath southeast Australia. Data are sourced from the WOMBAT transportable seismic array, the largest of its kind in the southern hemisphere, which enables horizontal resolution of approximately 50 km to be achieved over a large region that includes Victoria, New South Wales and southern South Australia. In order to account for long-wavelength structure that is lost due to the use of multiple teleseismic datasets from adjacent arrays with non-overlapping recording periods, the AuSREM mantle model is included as prior information in the inversion. Furthermore, AuSREM crust and Moho structure is explicitly included in the initial model in order to account for the presence of shallow heterogeneity which is poorly constrained by the teleseismic dataset. The P wave velocity model obtained from the joint inversion of WOMBAT teleseismic data represents a vast new resource on the seismic structure of the upper mantle beneath southeast Australia. One of the most striking features of the model is the presence of a north-dipping low-velocity anomaly beneath the Newer Volcanics province, a Quaternary intraplate basaltic province in western Victoria. The anomaly appears to terminate at approximately 200 km depth and has a structure that is more suggestive of a source confined to the upper mantle rather

Global upper mantle tomography of seismic velocities and anisotropies

Journal of Geophysical Research, 1991

A data set of 2600 paths for Rayleigh waves and 2170 paths for Love waves enabled us to retrieve three-dimensional distributions of different seismic parameters. Shallow layer corrections have been carefully performed on phase velocity data before regionalization and inversion at depth. The different seismic parameters include the five parameters of a radially anisotropic medium and the eight azimuthal anisotropic parameters as defined by Montagner and Nataf. It is found that the lateral heterogeneities of velocities and anisotropies in the upper mantle are dominated down to 250-30 km by plate tectonics with slow velocities below ridges, high velocities below continents and a velocity increasing with the age of the seafloor. Anisotropy is present in this whole depth range and the directions of maximum velocities are in good agreement with absolute plate velocities. Below 300 km, there is a sharp decreasing of the amplitude of lateral heterogeneities of seismic velocities and anisotropies. Below 450 km, lateral heterogeneities display a degree 2 and to a less extent a degree 6 pattem. Therefore, between 250 km and 450 km, there is a transition region where vertical circulation of matter is possible as shown by subducted slabs and "plumes" of slow velocities but which probably separates two types of convection. The first one is closely related to plate tectonics and to the distribution of continents. The second one dominates below 450 km and is characterized by two downgoing and two upgoing flOWS.

Elastic and anelastic structure of the lowermost mantle beneath the Western Pacific from waveform inversion

Geophysical Journal International, 2016

We investigate the elastic and anelastic structure of the lowermost mantle at the western edge of the Pacific large low shear velocity province (LLSVP) by inverting a collection of S and ScS waveforms. The transverse component data were obtained from F-net for 31 deep earthquakes beneath Tonga and Fiji, filtered between 12.5 and 200 s. We observe a regional variation of S and ScS arrival times and amplitude ratios, according to which we divide our region of interest into three subregions. For each of these subregions, we then perform 1-D (depth-dependent) waveform inversions simultaneously for radial profiles of shear wave velocity (V S ) and seismic quality factor (Q). Models for all three subregions show low V S and low Q structures from 2000 km depth down to the core-mantle boundary. We further find that V S and Q in the central subregion, sampling the Caroline plume, are substantially lower than in the surrounding regions, whatever the depth. In the central subregion, V S -anomalies with respect to PREM (dV S ) and Q are about -2.5 per cent and 216 at a depth of 2850 km, and -0.6 per cent and 263 at a depth of 2000 km. By contrast, in the two other regions, dV S and Q are -2.2 per cent and 261 at a depth of 2850 km, and -0.3 per cent and 291 at a depth of 2000 km. At depths greater than ∼2500 km, these differences may indicate lateral variations in temperature of ∼100 K within the Pacific LLSVP. At shallower depths, they may be due to the temperature difference between the Caroline plume and its surroundings, and possibly to a small fraction of iron-rich material entrained by the plume.

Probing South Pacific mantle plumes with ocean bottom seismographs

Eos, Transactions American Geophysical Union, 2005

We conducted broadband ocean bottom seismic observations on the French Polynesian seafloor from 2003 to 2005 to image the mantle structure beneath the South Pacific superswell. A preliminary analysis of the recovered seismic data indicated slow velocity anomalies in the upper mantle beneath the superswell, which appear to be related to hot spots at surface.

Implications for intraplate volcanism and back-arc deformation in northwestern New Zealand, from joint inversion of receiver functions and surface waves

We employ a joint inversion of teleseismic receiver functions and surface wave phase velocities to determine the shear wave velocity structure in the crust and upper mantle beneath northwestern New Zealand. Receiver functions primarily contain information on velocity contrasts, while surface waves are sensitive to the average shear velocity with depth. By performing a joint inversion we reduce the limitations of each method, resulting in a more robust shear wave model. Inversion results reveal regions of low shear wave velocity of ∼2.8 km s −1 in the mid-crust (10-19 km depth) and ∼4.0 km s −1 in the upper mantle (70-90 km depth) beneath Quaternary intraplate basalt fields. We infer that the mid-crustal low-velocity zones (LVZs) are bodies of partial melt, most likely rhyolite intrusions. We suggest that the upper mantle LVZ is caused by the melt-producing regions of the upper mantle and is a source for the basalts of the Auckland Volcanic Field. This is in agreement with models for a shallow upper mantle source rather than a deep-seated mantle plume for the Auckland volcanism.

Mantle P-wave velocity structure beneath the Hawaiian hotspot

Earth and Planetary Science Letters, 2011

Three-dimensional images of P-wave velocity structure beneath the Hawaiian Islands, obtained from a network of seafloor and land seismometers, show an upper-mantle low-velocity anomaly that is elongated in the direction of the island chain and surrounded by a high-velocity anomaly in the shallow upper mantle that is parabolic in map view. Low velocities continue downward to the mantle transition zone between 410 and 660 km depth and extend into the topmost lower mantle, although the resolution of lower mantle structure from this data set is limited. Comparisons of inversions with separate data sets at different frequencies suggest that contamination by water reverberations is not markedly biasing the P-wave imaging of mantle structure. Many aspects of the P-wave images are consistent with independent tomographic images of S-wave velocity in the region, but there are some differences in upper mantle structure between P-wave and S-wave velocities. Inversions without station terms show a southwestward shift in the location of lowest P-wave velocities in the uppermost mantle relative to the pattern for shear waves, and inversions with station terms show differences between P-wave and S-wave velocity heterogeneity in the shallow upper mantle beneath and immediately east of the island of Hawaii. Nonetheless, the combined data sets are in general agreement with the hypothesis that the Hawaiian hotspot is the result of an upwelling, high-temperature plume. The broad upper-mantle low-velocity region beneath the Hawaiian Islands may reflect the diverging "pancake" at the top of the upwelling zone; the surrounding region of high velocities could represent a downwelling curtain; and the low-velocity anomalies southeast of Hawaii in the transition zone and topmost lower mantle are consistent with predictions of plume tilt.

Global upper‐mantle tomography with the automated multimode inversion of surface and S‐wave forms

2008

We apply the Automated Multimode Inversion of surface and S-wave forms to a large global data set, verify the accuracy of the method and assumptions behind it, and compute an S vvelocity model of the upper mantle (crust-660 km). The model is constrained with ∼51 000 seismograms recorded at 368 permanent and temporary broadband seismic stations. Structure of the mantle and crust is constrained by waveform information both from the fundamentalmode Rayleigh waves (periods from 20 to 400 s) and from S and multiple S waves (higher modes). In order to enhance the validity of the path-average approximation, we implement the automated inversion of surface-and S-wave forms with a three-dimensional (3-D) reference model. Linear equations obtained from the processing of all the seismograms of the data set are inverted for seismic velocity variations also relative to a 3-D reference, in this study composed of a 3-D model of the crust and a one-dimensional (1-D), global-average depth profile in the mantle below. Waveform information is related to shear-and compressional-velocity structure within approximate waveform sensitivity areas. We use two global triangular grids of knots with approximately equal interknot spacing within each: a finely spaced grid for integration over sensitivity areas and a rougher-spaced one for the model parametrization. For the tomographic inversion we use LSQR with horizontal and vertical smoothing and norm damping. We invert for isotropic variations in Sand P-wave velocities but also allow for S-wave azimuthal anisotropy-in order to minimize errors due to possible mapping of anisotropy into isotropic heterogeneity. The lateral resolution of the resulting isotropic upper-mantle images is a few hundred kilometres, varying with data sampling. We validate the imaging technique with a 'spectral-element' resolution test: inverting a published global synthetic data set computed with the spectral-element method using a laterally heterogeneous mantle model we are able to reconstruct the synthetic model accurately. This test confirms both the accuracy of the implementation of the method and the validity of the JWKB and path-average approximations as applied in it. Reviewing the tomographic model, we observe that lowS v-velocity anomalies beneath mid-ocean ridges and backarc basins extend down to ∼100 km depth only, shallower than according to some previous tomographic models; this presents a close match to published estimates of primary melt production depth ranges there. In the seismic lithosphere beneath cratons, unambiguous high velocity anomalies extend to ∼200 km. Pronounced low-velocity zones beneath cratonic lithosphere are rare; where present (South America; Tanzania) they are neighboured by volcanic areas near cratonic boundaries. The images of these low-velocity zones may indicate hot material-possibly of mantle-plume origin-trapped or spreading beneath the thick cratonic lithosphere.

Mantle Seismic Structure Beneath the MELT Region of the East Pacific Rise from P and S Wave Tomography

Science, 1998

Relative travel time delays of teleseismic P and S waves, recorded during the Mantle Electromagnetic and Tomography (MELT) Experiment, have been inverted tomographically for upper-mantle structure beneath the southern East Pacific Rise. A broad zone of low seismic velocities extends beneath the rise to depths of about 200 kilometers and is centered to the west of the spreading center. The magnitudes of the P and S wave anomalies require the presence of retained mantle melt; the melt fraction near the rise exceeds the fraction 300 kilometers off axis by as little as 1%. Seismic anisotropy, induced by mantle flow, is evident in the P wave delays at near-vertical incidence and is consistent with a half-width of mantle upwelling of about 100 km.