Division VI / Commission 24 / Working Group Planetary Nebulae (original) (raw)
Related papers
WORKPLANS: Workshop on Planetary Nebula Observations
Galaxies, 2020
This workshop is the second of the WORKPLANS series, which we started in 2016. The main goal of WORKPLANS is to build up a network of planetary nebulae (PNe) experts to address the main open questions in the field of PNe research. The specific aims of the WORKPLANS workshop series are (i) to discuss and prioritize the most important topics to be investigated by the PN community in the following years; (ii) to establish a network of excellent researchers with complementary expertise; (iii) to formulate ambitious observing proposals for the most advanced telescopes and instrumentation presently available (ALMA, SOFIA, VLT, GTC, HST, etc.), addressing those topics; and (iv) to develop strategies for major proposals to future observatories (JWST, ELT, SPICA, Athena, etc.). To achieve these goals, WORKPLANS II brought together experts in all key sub-areas of the PNe research field, namely: analysis and interpretation of PNe observational data; theoretical modeling of gas and dust emissio...
Historical overview of planetary nebulae
IAU Symposium 283: Planetary Nebulae: an Eye to the Future, 2011
Planetary nebulae (PNs) were first discovered over 200 years ago and our understanding of these objects has undergone significant evolution over the years. Developments in astronomical optical spectroscopy and atomic physics have shown that PNe are gaseous objects photoionized by UV radiation from a hot central star. Studies of the kinematics of the nebulae coupled with progress in theories of stellar evolution have led to the identification that PNe are evolved stars and progenitors of white dwarfs. Development of infrared and millimeterwave technology in the 1970s made us realize that there is significant amount of neutral matter (molecules and dust) in PNe. The link of PNe to the stellar winds from their progenitor asymptotic giant branch (AGB) stars and subsequent dynamical interactions are now believed to be the underlying causes of the morphological structures of PNe. The role of PNe as prolific molecular factories producing complex molecules and organic solids has significant implications on the chemical enrichment of the Galaxy. In this paper, we discuss the misconceptions and errors that we have encountered in our journey of understanding the nature of PN. The various detours and dead ends that had happened during our quest to pin down the evolutionary status and causes of nebulae ejection will be discussed. As there are still many unsolved problems in PN research, these lessons of history have much to offer for future progress in this field.
Planetary nebulae and how to find them: A concise review
Frontiers in Astronomy and Space Sciences
This review provides useful background and information on how we find, vet and compile Planetary Nebulae (PNe) candidates and verify them. It presents a summary of the known Galactic PNe population and their curation in the Hong Kong/AAO/Strasbourg/Hα PNe catalogue, “HASH”. It is a simple introduction for anyone interested in working with PNe, including postgraduate students entering the field and for more general interest too.
Planetary Nebula Surveys: Past, Present and Future
In this review we cover the detection, identification and astrophysical importance of planetary nebulae (PN). The legacy of the historic Perek & Kohoutek and Acker et al. catalogues is briefly covered before highlighting the more recent but significant progress in PN discoveries in our Galaxy and the Magellanic Clouds. We place particular emphasis on the major MASH and the IPHAS catalogues, which, over the last decade alone, have essentially doubled Galactic and LMC PN numbers. We then discuss the increasing role and importance that multi-wavelength data is playing in both the detection of candidate PN and the elimination of PN mimics that have seriously biased previous PN compilations. The prospects for future surveys and current efforts and prospects for PN detections in external galaxies are briefly discussed due to their value both as cosmic distance indicators and as kinematical probes of galaxies and dark matter properties.
Spectroscopy and imaging of newly discovered planetary nebulae
Astronomy and Astrophysics Supplement Series, 1996
The major purpose of this paper was to prove or disprove the nature of planetary nebula (PN) candidates in the northern hemisphere, taken from an internal list. We present spectroscopic observations and imaging of fifteen PNe, twelve of them identified for the first time. Another two candidates turned out to be an emission-line galaxy and an H ii region. All observed PNe represent evolved stages, their angular diameter ranging from 8 to 90 , and exhibit very low surface brightnesses. The three largest and faintest nebulae each host a central star of magnitude 18 to 20 m .
Milky Way and Magellanic Cloud Surveys for Planetary Nebulae
Proceedings of the International Astronomical Union
The recent on-line availability of large-scale, wide-field surveys of the Galaxy and Magellanic Clouds in several optical and near/mid-infrared passbands has provided unprecedented opportunities to refine selection techniques and eliminate contaminants in PN surveys. This has been coupled with new surveys offering improved detection rates via higher sensitivity and resolution. This will permit more extreme ends of the PN luminosity function to be explored and enable studies of under represented PN evolutionary states. Known PNe in our Galaxy and LMC have thus been significantly increased over the last few years due primarily to the advent of narrow-band imaging in important nebula lines such as Hα, [O iii] and [S iii]. These PNe are generally of lower surface brightness, larger angular extent, in more obscured regions and in later stages of evolution than those in most previous surveys. A more representative PN population for in-depth study is now available, particularly in the LMC where the known distance adds considerable utility for derived PN parameters. Future prospects for Galactic and LMC PNe research are briefly highlighted.
c © ESO 2009 Astronomy &Astrophysics Candidate planetary nebulae in the IPHAS photometric catalogue
2009
Context. We have carried out a semi-automated search for planetary nebulae (PNe) in the INT photometric H-alpha survey (IPHAS) catalogue. We present the PN search and the list of selected candidates. We cross correlate the selected candidates with a number of existing infrared galactic surveys in order to gain further insight into the nature of the candidates. Spectroscopy of a subset of objects is used to estimate the number of PNe present in the entire candidate list. Aims. The overall aim of the IPHAS PN project is to carry out a deep census of PNe in the northern Galactic plane, an area where PN detections are clearly lacking. Methods. The PN search is carried out on the IPHAS photometric catalogue. The candidate selection is based on the IPHAS and 2MASS/UKIDSS colours of the objects and the final candidate selection is made visually. Results. From the original list of ∼600 million IPHAS detections we have selected a total of 1005 objects. Of these, 224 are known objects, leavin...