Multifunctional mitoxantrone-conjugated magnetic nanosystem for targeted therapy of folate receptor-overexpressing malignant cells (original) (raw)

Specific targeting of cancer cells by multifunctional mitoxantrone-conjugated magnetic nanoparticles

2013

We report on the synthesis of bifunctional mitoxantrone (MTX)-grafted magnetic nanoparticles (MNPs) modified by dopamine-polyethylene glycol-folic acid (DPA-PEG-FA) for targeted imaging and therapy of cancer. MNPs ($7-10 nm) were synthesized using the thermal decomposition reaction of Fe(acac) 3. Bromoacetyl (BrAc) terminal polyethylene glycol dopamine (DPA-PEG-BrAc) was synthesized and treated with ethylene diamine to form bifunctional PEG moiety containing dopamine at one end and amino group at the other end (i.e. DPA-PEG-NH 2). It was then reacted with Fe 3 O 4 nanoparticles (NPs) to form Fe 3 O 4-DPA-PEG-NH 2 NPs. The activated folic acid (FA) was chemically coupled to Fe 3 O 4-DPA-PEG-NH 2 , forming Fe 3 O 4-DPA-PEG-FA. MTX was then conjugated to Fe 3 O 4-DPA-PEG-FA, forming Fe 3 O 4-DPA-PEG-FA-MTX. Physicochemical characteristics of the engineered MNPs were determined. The particle size analysis and electron microscopy showed an average size of $35 nm for Fe 3 O 4-DPA-PEG-FA-MTX NPs with superparamagnetic behavior. FT-IR spectrophotometry analysis confirmed the conjugation of FA and MTX onto the MNPs. Fluorescence microscopy, cytotoxicity assay and flow cytometry analysis revealed that the engineered Fe 3 O 4-DPA-PEG-FA-MTX NPs were able to specifically bind to and significantly inhibit the folate receptor (FR)-positive MCF-7 cells, but not the FR-negative A549 cells. Based upon these findings, we suggest the Fe 3 O 4-DPA-PEG-FA-MTX NPs as an effective multifunctional-targeted nanomedicine toward simultaneous imaging and therapy of FR-positive cancers.

Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer

Colloids and Surfaces B: Biointerfaces, 2013

Magnetic nanoparticles (MNPs) have been widely used as drug delivery nanosystems and contrast agent for imaging and detection. To engineer multifunctional nanomedicines for simultaneous imaging and therapy of cancer cells, in the current study, we synthesized tamoxifen (TMX) loaded folic acid (FA) armed MNPs to target the folate receptor (FR) positive cancer cells. To this end, Fe 3 O 4 nanoparticles (NPs) were synthesized through thermal decomposition of Fe(acac) 3. Polyethylene glycol (PEG) was treated with excess bromoacetyl chloride (BrAc) and then with 3-aminopropyltriethoxysilane (APS) to synthesize bromoacetyl-terminal polyethylene glycol silane (APS-PEG-BrAc). The latter complex was treated with protected ethylene diamine to form a bifunctional PEG compound containing triethoxysilane at one end and amino group at the other end (APS-PEG-NH 2). The Fe 3 O 4-APS-PEG-NH 2 NPs were prepared through self-assembly of APS-PEG-NH 2 on MNPs, while the amino groups at the end of Fe 3 O 4-APS-PEG-NH 2 were conjugated with folic acid (FA), then loaded with TMX (Fe 3 O 4-APS-PEG-FA-TMX). The average size of "Fe 3 O 4-APS-PEG-FA-TMX" NPs was approximately 40 nm. The engineered MNPs were further characterized and examined in the human breast cancer MCF-7 cells that express FR. The TMX loaded MNPs (with loading efficiency of 49.1%) showed sustained liberation of TMX molecules (with 90% release in 72 h). Fluorescence microcopy and flow cytometry analyses revealed substantial interaction of Fe 3 O 4-APS-PEG-FA-TMX NPs with the FR-positive MCF-7 cells. Cytotoxicity analysis resulted in significant growth inhibition in MCF-7 cells treated with Fe 3 O 4-APS-PEG-FA-TMX NPs. Based on these findings, the TMXloaded FA-armed PEGylated MNPs as a novel multifunctional nanomedicine/theranostic for concurrent targeting, imaging and therapy of the FR-positive cancer cells.

Synthesis and evaluation of radiolabeled, folic acid-PEG conjugated, amino silane coated magnetic nanoparticles in tumor bearing Balb/C mice

Nukleonika, 2015

To design a potent agent for positron emission tomography/magnetic resonance imaging (PET/MRI) imaging and targeted magnetic hyperthermia-radioisotope cancer therapy radiolabeled surface modifi ed superparamagnetic iron oxide nanoparticles (SPIONs) were used as nanocarriers. Folic acid was conjugated for increasing selective cellular binding and internalization through receptor-mediated endocytosis. SPIONs were synthesized by the thermal decomposition of tris (acetylacetonato) iron (III) to achieve narrow and uniform nanoparticles. To increase the biocompatibility of SPIONs, they were coated with (3-aminopropyl) triethoxysilane (APTES), and then conjugated with synthesized folic acid-polyethylene glycol (FA-PEG) through amine group of (3-aminopropyl) triethoxysilane. Finally, the particles were labeled with 64 Cu (t 1/2 = 12.7 h) using 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono (N-hydroxy succinimide ester) DOTA-NHS chelator. After the characterization of SPIONs, their cellular internalization was evaluated in folate receptor (FR) overexpressing KB (established from a HeLa cell contamination) and mouse fi broblast cell (MFB) lines. Eventually, active and passive targeting effects of complex were assessed in KB tumor-bearing Balb/C mice through biodistribution studies. Synthesized bare SPIONs had low toxicity effect on healthy cells, but surface modifi cation increased their biocompatibility. Moreover, KB cells viability was reduced when using folate conjugated SPIONs due to FR-mediated endocytosis, while having little effect on healthy cells (MFB). Moreover, this radiotracer had tolerable in vivo characteristics and tumor uptake. In the receptor blocked case, tumor uptake was decreased, indicating FR-specifi c uptake in tumor tissue while enhanced permeability and retention effect was major mechanism for tumor uptake.

Folic Acid-Functionalized, Condensed Magnetic Nanoparticles for Targeted Delivery of Doxorubicin to Tumor Cancer Cells Overexpressing the Folate Receptor

ACS Omega, 2019

This study concerns the development of folic acid (FA)-functionalized iron oxide condensed colloidal magnetic clusters for a more selective delivery of doxorubicin (DOX) to tumor cancer cells overexpressing the folate receptor. Alginatecoated condensed magnetic nanoparticles (co-MIONs) were synthesized via an alkaline precipitation method of an iron precursor in the presence of sodium alginate. Poly(ethylene glycol) (OH-PEG-NH 2) was conjugated to the carboxylic acid end group of alginate and folic acid (FA) was conjugated to the hydroxyl terminal group of PEG to produce folate-functionalized, pegylated co-MIONS (Mag-Alg-PEG-FA). The physicochemical properties of nanoparticles were fully characterized. DOX was loaded on the nanoparticles, and the cellular uptake and anticancer efficacy of the nanoparticles were examined in cancer cell lines expressing and not expressing the folate receptor. The biocompatibility of the carrier (blank nanoparticles) was also evaluated by cytocompatibility and hemocompatibility experiments. The nanoparticles exhibited sustained DOX release in aqueous buffers and biorelevant media, which was responsive to pH and external alternating current magnetic fields. The effect of the magnetic field on DOX percentage release appeared to be independent of the timing (onset time) of magnetic field application, providing flexibility to the magnetic control of drug release from the nanoparticles. The blank nanoparticles were not cytotoxic and did not cause hemolysis. The DOX-loaded and FA-functionalized nanoparticles exhibited increased uptake and caused increased apoptosis and cytotoxicity against the MDA-MB-231 cell line, expressing the folate receptor, compared to the MCF-7 cell line, not expressing the folate receptor. The application of a 0.5 T magnetic field during incubation of the nanoparticles with the cancer cells increased the cellular uptake and cytotoxicity of the nanoparticles. The obtained results indicate the potential of the folate-functionalized, pegylated co-MIONS for a more efficacious DOX delivery to cancer cells of solid tumors.

Enhanced toxicity and cellular uptake of methotrexate-conjugated nanoparticles in folate receptor-positive cancer cells by decorating with folic acid-conjugated d -α-tocopheryl polyethylene glycol 1000 succinate

Colloids and Surfaces B: Biointerfaces, 2015

Folic acid-conjugated d-␣-tocopheryl polyethylene glycol 1000 succinate (TPGS-FOL) decorated methotrexate (MTX)-conjugated nanoparticles were developed for targeted delivery of MTX to folate receptor-expressed tumor cells. The synthesis of TPGS-FOL followed 3-step process. Firstly, the terminal hydroxyl group of TPGS was converted to sulfonyl chloride using mesyl chloride in comparison with nosyl and tosyl chlorides. The highest conversion efficiency and yield were obtained by mesyl chloride due to the formation of higher reactive intermediate in a presence of triethylamine. Secondly, the substitution of sulfonyl group by sodium azide produced considerably high yield with conversion efficiency of over 90%. Lastly, the coupling reaction of azido-substituted TPGS and propargyl folamide by click reaction resulted in 96% conjugation efficiency without polymer degradation. To fabricate the folate receptortargeted nanoparticles, 10 and 20%mol MTX-conjugated PEGylated poly(-caprolactone) nanoparticles were decorated with TPGS-FOL. The size and size distribution of MTX-conjugated nanoparticles relatively increased with %MTX. The MTX release from the nanoparticles was accelerated in acidic medium with an increase of %MTX but retarded in physiological pH medium. The decoration of TPGS-FOL onto the nanoparticles slightly enlarged the size and size distribution of the nanoparticles; however, it did not affect the surface charge. The cytotoxicity and cellular uptake of MCF-7 cells demonstrated that 10% MTX-conjugated nanoparticles and FOL-decorated nanoparticles possessed higher toxicity and uptake efficiency than 20% MTX-conjugated nanoparticles and undecorated nanoparticles, respectively. The results indicated that FOL-10% MTX-conjugated nanoparticles exhibited potential targeted delivery of MTX to folate receptor-expressed cancer cells.

Folate and Pegylated Aliphatic Polyester Nanoparticles for Targeted Anticancer Drug Delivery

International Journal of Nanomedicine

The use of chemotherapeutic agents to combat cancer is accompanied by high toxicity due to their inability to discriminate between cancer and normal cells. Therefore, cancer therapy research has focused on the targeted delivery of drugs to cancer cells. Here, we report an in vitro study of folate-poly(ethylene glycol)-poly(propylene succinate) nanoparticles (FA-PPSu-PEG-NPs) as a vehicle for targeted delivery of the anticancer drug paclitaxel in breast and cervical cancer cell lines. Methods: Paclitaxel-loaded-FA-PPSu-PEG-NPs characterization was performed by in vitro drug release studies and cytotoxicity assays. The NPs cellular uptake and internalization mechanism were monitored by live-cell imaging in different cancer cell lines. Expression of folate receptor-α (FOLR1) was examined in these cell lines, and specific FOLR1-mediated entry of the FA-PPSu-PEG-NPs was investigated by free folic acid competition. Using inhibitors for other endocytic pathways, alternative, non-FOLR1 dependent routes for NPs uptake were also examined. Results: Drug release experiments of Paclitaxel-loaded PPSu-PEG-NPs indicated a prolonged release of Paclitaxel over several days. Cytotoxicity of Paclitaxel-loaded PPSu-PEG-NPs was similar to free drug, as monitored in cancer cell lines. Live imaging of cells treated with either free Paclitaxel or Paclitaxel-loaded PPSu-PEG-NPs demonstrated tubulinspecific cell cycle arrest, with similar kinetics. Folate-conjugated NPs (FA-PPSu-PEG-NPs) targeted the FOLR1 receptor, as shown by free folic acid competition of the FA-PPSu-PEG-NPs cellular uptake in some of the cell lines tested. However, due to the differential expression of FOLR1 in the cancer cell lines, as well as the intrinsic differences between the different endocytic pathways utilized by different cell types, other mechanisms of nanoparticle cellular entry were also used, revealing that dynamin-dependent endocytosis and macropinocytosis pathways mediate, at least partially, cellular entry of the FA-PPSu-PEG NPs. Conclusion: Our data provide evidence that Paclitaxel-loaded-FA-PPSu-PEG-NPs can be used for targeted delivery of the drug, FA-PPSu-PEG-NPs can be used as vehicles for other anticancer drugs and their cellular uptake is mediated through a combination of FOLR1 receptor-specific endocytosis, and macropinocytosis. The exploration of the different cellular uptake mechanisms could improve treatment efficacy or allow a decrease in dosage of anticancer drugs.

Interaction of cancer cells with magnetic nanoparticles modified by methacrylamido-folic acid

International Journal of Nanomedicine, 2011

Background: Magnetic nanoparticles show great promise for use as tools in a wide variety of biomedical applications. The purpose of this study was to investigate the potential effects of methacrylamido-folic acid (Ma-Fol)-modified magnetic nanoparticles on 5RP7 (H-ras-transformed rat embryonic fibroblasts) and NIH/3T3 (normal mouse embryonic fibroblasts). Methods: The cytotoxicity and viability of 5RP7 and NIH/3T3 cells were detected. The percentage of cells undergoing apoptosis was analyzed by flow cytometry using Annexin V-fluorescein isothiocyanate staining. Nanoparticle internalization into 5RP7 and NIH/3T3 cells was visualized by transmission electron microscopy. Conclusion: In this study, folic acid coupled to the surface of iron oxide for selective binding to cancer cells and immobilized the surfaces of magnetic nanoparticles. This complex improves cell internalization and targeting of cancer cells. We detected increased apoptosis using flow cytometry and transmission electron microscopy. Results: Folic acid modification of magnetic nanoparticles could be used to facilitate uptake to specific cancer cells for cancer therapy and diagnosis. Our results showed that the uptake of folic-acid modified nanoparticles by 5RP7 cancer cells was also much higher than that of 3T3 cells. This modification can be used for successful targeting of cancer cells expressing the folate receptor.

Pharmacokinetics and Anticancer Activity of Folic Acid-Functionalized Magnetic Nanoparticles

Journal of Biomedical Nanotechnology, 2017

The theranostic potential of functionalized magnetic nanoparticles (MNPs) generates different possibilities for their medical application, including better control of toxicity and reduction of potential side effects. Aminosilane magnetic nanoparticles (MNP@NH 2 and their folic acid derivatives (MNP@FA) labeled by N-hydroxysuccinimide ester (IRDye 800CW) were evaluated for prospective use in the design of new diagnostic and treatment tools for colorectal cancer, using the DLD-1 cell culture system and an animal model of cancer xenograft. In cell culture, MNP@FA internalization and nuclear localization were associated with decreased cell viability and increased apoptosis rate. Independent of the application method, the presence of folic acid on the MNP surface resulted in more rapid elimination from mice, without non-specific accumulation in animal organs. Additionally, increased retention of MNP@FA, restriction of tumor growth, and Caspase-3 dependent apoptosis were observed in the mouse xenograft model of colorectal cancer. Rapid and preferential uptake of MNP@FA by cancer cells associated with their ability to eliminate and prevent cancer cell growth (reduction of tumor mass) indicates their potential for targeted cancer therapy with lower toxicity.

MR imaging and targeting of human breast cancer cells with folate decorated nanoparticles

The way of viewing cancer has advanced considerably in the last few decades because of recent progress on two different topics: the knowledge of the mechanisms and characteristics of cancer and the innovation in imaging agent design. In particular the unique properties of cancer that allow differentiation from normal tissue could be employed in multi-functional nanoparticle imaging development. Genetic alterations, either endogenous or induced through gene therapy, are one class of such characteristics. At the same time proteomic differences such as overexpressed surface receptors are another targetable feature, used for enhanced nanoparticle retention. The here proposed magnetic nanoparticle (with biocompatible coating) was designed to target the human breast MDA-MB-231 tumor induced on a nude mice model. With the aim of developing a theranostic agent, the overexpression of folate protein receptor in breast cancer cells was exploited, decorating with folate an organic nanocarrier loaded with magnetite nanoparticles that acts as a diagnostic MRI (Magnetic Resonance Imaging) contrast agent, and Paclitaxel (PTX) as antitumoral drug. A high uptake of nanoparticles and remarkable effect on in vivo MRI images show the targeting ability of our compound and its prolonged retention in tumor tissues. Due to the presence of PTX, the developed nanocarrier may potentially be used also for therapeutic purposes. † Electronic supplementary information (ESI) available: The details of the nanoparticle characterization not specied in Materials and Methods (AFM image of Block-MNP-FA and NMRD relaxivity curves of NPs) are reported in ESI. See

Targeted fluoromagnetic nanoparticles for imaging of breast cancer mcf-7 cells

Advanced pharmaceutical bulletin, 2013

To achieve simultaneous imaging and therapy potentials, targeted fluoromagnetic nanoparticles were synthesized and examined in human breast cancer MCF-7 cells. Fe3O4 nanoparticles (NPs) were synthesized through thermal decomposition of Fe(acac)3. Then, magnetic nanoparticles (MNPs) modified by dopamine-poly ethylene glycol (PEG)-NH2; finally, half equivalent fluorescein isothiocyanate (FITC) and half equivalent folic acid were conjugated to one equivalent of it. The presence of Fe3O4-DPA-PEG-FA/FITC in the folate receptor (FR) positive MCF-7 cells was determined via fluorescent microscopy to monitor the cellular interaction of MNPs. FT-IR spectra of final compound confirmed existence of fluorescein on folic acid grafted MNPs. The Fe3O4-DPA-PEG-FA/FITC NPs, which displayed a size rang about 30-35 nm using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), were able to actively recognize the FR-positive MCF-7 cells, but not the FR-negative A549 cells. The u...