CO adsorption energies on metals with correction for high coordination adsorption sites – A density functional study (original) (raw)

The Molecular Adsorption of Carbon Monoxide on Cobalt Surfaces: A Dft Study

Progress in Reaction Kinetics and Mechanism, 2017

The theoretical molecular adsorption energies, vibrational frequencies and total density of states of carbon monoxide (CO) on the (100), (110) and (111) surfaces of the face-centred cubic (FCC) crystalline phase of metallic cobalt were investigated using density functional theory calculations. The on-top adsorption state and three surface coverages were used for comparison of the results. The geometries of cobalt FCC surfaces, as well as those with adsorbed CO molecules and the CO binding energies were calculated with the generalised gradient approximation (GGA-D) using the revised revPBE-D3(BJ) functional. The theoretical results for adsorption energies of carbon monoxide were proportional to the electron density of the cobalt surfaces, according to the following order: FCC (100) > FCC (110) > FCC (111). For CO adsorbed on the surface of cobalt metal the C–O distance increases, producing a weakening of the bond and the calculated stretching frequency decreases when compared w...

CO adsorption on Ni, Pd, Cu and Ag deposited on MgO, CaO, SrO and BaO: Density functional calculations

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright

A Computational Map of the Probe CO Molecule Adsorption and Dissociation on Transition Metal Low Miller Indices Surfaces

The adsorption and dissociation of carbon monoxide (CO) have been studied on 81 Transition Metal (TM) surfaces, with TMs having body centred cubic (bcc), face centred cubic (fcc), or hexagonal close-packed (hcp) crystalline structures. For each surface, CO, C, and O adsorptions, and C+O co-adsorptions were studied by density functional theory calculations on suited slab models, using Perdew-Burke-Ernzerhof functional with Grimme’s D3 correction for dispersive forces. CO dissociation activation and reaction energies, ΔE, were determined. The values, including zero point energy, were used to capture chemical trends along groups, d-series, and crystallographic phases concerning CO adsorption and dissociation, while simulated infrared (IR) spectroscopies and thermodynamic phase diagrams are provided. Late fcc TMs are found to adsorb CO weakly, perpendicularly, and are IR-visible, opposite to early bcc TMs, while hcp cases are distributed along these two extremes. The d-band centre, εd, ...