HERschel Observations of Edge-on Spirals (HEROES) (original) (raw)

The dust scaling relations of the Herschel Reference Survey

We combine new Herschel/SPIRE sub-millimeter observations with existing multiwavelength data to investigate the dust scaling relations of the Herschel Reference Survey, a magnitude-, volume-limited sample of ~300 nearby galaxies in different environments. We show that the dust-to-stellar mass ratio anti-correlates with stellar mass, stellar mass surface density and NUV-r colour across the whole range of parameters covered by our sample. Moreover, the dust-to-stellar mass ratio decreases significantly when moving from late- to early-type galaxies. These scaling relations are similar to those observed for the HI gas-fraction, supporting the idea that the cold dust is tightly coupled to the cold atomic gas component in the interstellar medium. We also find a weak increase of the dust-to-HI mass ratio with stellar mass and colour but no trend is seen with stellar mass surface density. By comparing galaxies in different environments we show that, although these scaling relations are followed by both cluster and field galaxies, HI-deficient systems have, at fixed stellar mass, stellar mass surface density and morphological type systematically lower dust-to-stellar mass and higher dust-to-HI mass ratios than HI-normal/field galaxies. This provides clear evidence that dust is removed from the star-forming disk of cluster galaxies but the effect of the environment is less strong than what is observed in the case of the HI disk. Such effects naturally arise if the dust disk is less extended than the HI and follows more closely the distribution of the molecular gas phase, i.e., if the dust-to-atomic gas ratio monotonically decreases with distance from the galactic center.

The Herschel Space Observatory view of dust in M81

Astronomy & Astrophysics, 2010

We use Herschel Space Observatory data to place observational constraints on the peak and Rayleigh-Jeans slope of dust emission observed at 70-500 microns in the nearby spiral galaxy M81. We find that the ratios of wave bands between 160 and 500 microns are primarily dependent on radius but that the ratio of 70 to 160 micron emission shows no clear dependence on surface brightness or radius. These results along with analyses of the spectral energy distributions imply that the 160-500 micron emission traces 15-30 K dust heated by evolved stars in the bulge and disc whereas the 70 micron emission includes dust heated by the active galactic nucleus and young stars in star forming regions.

Dust emission profiles of DustPedia galaxies

Astronomy & Astrophysics, 2018

Most radiative transfer models assume that dust in spiral galaxies is distributed exponentially. In this paper our goal is to verify this assumption by analysing the two-dimensional large-scale distribution of dust in galaxies from the DustPedia sample. For this purpose, we have made use of Herschel imaging in five bands, from 100 to 500 μm, in which the cold dust constituent is primarily traced and makes up the bulk of the dust mass in spiral galaxies. For a subsample of 320 disc galaxies, we successfully performed a simultaneous fitting with a single Sérsic model of the Herschel images in all five bands using the multi-band modelling code GALFITM. We report that the Sérsic index n, which characterises the shape of the Sérsic profile, lies systematically below 1 in all Herschel bands and is almost constant with wavelength. The average value at 250 μm is 0.67 ± 0.37 (187 galaxies are fitted with n250 ≤ 0.75, 87 galaxies have 0.75 < n250 ≤ 1.25, and 46 – with n250 > 1.25). Mos...