The formation of mantle phlogopite in subduction zone hybridization (original) (raw)

The Finero phlogopite-peridotite massif: an example of subduction-related metasomatism

Contributions To Mineralogy and Petrology, 1999

The Finero peridotite massif is a harzburgite that suffered a dramatic metasomatic enrichment resulting in the pervasive presence of amphibole and phlogopite and in the sporadic occurrence of apatite and carbonate (dolomite)-bearing domains. Pyroxenite (websterite) dykes also contain phlogopite and amphibole, but are rare. Peridotite bulk-rock composition retained highly depleted major element characteristics, but was enriched in K, Rb, Ba, Sr, LREE (light rare earth elements) (LaN/YbN = 8–17) and depleted in Nb. It has high radiogenic Sr (87Sr/86Sr(270) = 0.7055–0.7093), low radiogenic Nd (ɛNd(270) = −1 to −3) and EMII-like Pb isotopes. Two pyroxenite – peridotite sections examined in detail show the virtual absence of major and trace element gradients in the mineral phases. In both rock types, pyroxenes and olivines have the most unfertile major element composition observed in Ivrea peridotites, spinels are the richest in Cr, and amphibole is pargasite. Clinopyroxenes exhibit LREE-enriched patterns (LaN/YbN ∼16), negative Ti and Zr and generally positive Sr anomaly. Amphibole has similar characteristics, except a weak negative Sr anomaly, but incompatible element concentration ∼1.9 (Sr) to ∼7.9 (Ti) times higher than that of coexisting clinopyroxene. Marked geochemical gradients occur toward apatite and carbonate-bearing domains which are randomly distributed in both the sections examined. In these regions, pyroxenes and amphibole (edenite) are lower in mg## and higher in Na2O, and spinels and phlogopite are richer in Cr2O3. Both the mineral assemblage and the incompatible trace element characteristics of the mineral phases recall the typical signatures of “carbonatite” metasomatism (HFSE depletion, Sr, LILE and LREE enrichment). Clinopyroxene has higher REE and Sr concentrations than amphibole (amph/cpxDREE,Sr = 0.7–0.9) and lower Ti and Zr concentrations. It is proposed that the petrographic and geochemical features observed at Finero are consistent with a subduction environment. The lack of chemical gradients between pyroxenite and peridotite is explained by a model where melts derived from an eclogite-facies slab infiltrate the overhanging harzburgitic mantle wedge and, because of the special thermal structure of subduction zones, become heated to the temperature of the peridotite. If the resulting temperature is above that of the incipient melting of the hydrous peridotite system, the slab-derived melt equilibrates with the harzburgite and a crystal mush consisting of harzburgite and a silica saturated, hydrous melt is formed. During cooling, the crystal mush crystallizes producing the observed sequence of mineral phases and their observed chemical characteristics. In this context pyroxenites are regions of higher concentration of the melt in equilibrium with the harzburgite and not passage-ways through which exotic melts percolated. Only negligible chemical gradients can appear as an effect of the crystallization process, which also accounts for the high amphibole/clinopyroxene incompatible trace element ratios. The major element refractory composition is explained by an initially high peridotite/melt ratio. The apatite, carbonate-bearing domains are the result of the presence of some CO2 in the slab-derived melt. The CO2/H2O ratio in the peridotite mush increased by crystallization of hydrous phases (amphibole and phlogopite) locally resulting in the unmixing of a late carbonate fluid. The proposed scenario is consistent with subduction of probably Variscan age and with the occurrence of modal metasomatism before peridotite incorporation in the crust.

Magma hybridization in the middle crust: Possible consequences for deep-crustal magma mixing

2012

The 465 Ma Svarthopen pluton in northcentral Norway was emplaced under middle-crustal conditions (~700 MPa) into metasedimentary rocks of the Helgeland Nappe Complex. The pluton is characterized by zones of mingling and mixing of gabbro/ diorite with peraluminous, garnet-bearing biotite granite. Variation in bulk-rock Sr and Nd isotope ratios are consistent with simple mixing; however, nonuniform enrichment of Zr and the rare earth elements (REEs) suggests that individual magma batches underwent postmixing fractionation. Hybrid intermediate rocks are characterized by Ca-rich garnet. Such garnet is absent in possible mafi c end members, and garnet in felsic end members is Ca poor. Evidently, the ferroan , peraluminous hybrid rocks promoted garnet stability, and we interpret these garnets to be igneous in origin. Garnets in the hybrids have low Zr contents, positive light REE slopes, and fl at to negative heavy REE slopes with lower REE abundances than in typical igneous garnet. These trace-element data combined with textural evidence suggest that garnet formed near the solidus, after fractionation of zircon, allanite, and possibly xenotime. The Svarthopen pluton is not unique: similar intermediate rocks with Ca-rich garnets crop out adjacent to three other plutons in the region. Formation of garnet-bearing hybrid rocks in the Svarthopen pluton provides an analog for mixing of peraluminous and ferroan endmember magmas in the deep crust, where such mixing should be widespread, particularly in continental arcs and zones of continental collision. Postmixing fractionation of hybrid magmas could greatly increase the diversity of major-and trace-element abundances yet retain an isotopic signature of mixing. Moreover , formation of garnet-rich hybrids could result in lower-crustal rocks dense enough to delaminate from the arc crust.

Mantle-derived magmas-roles of variable source peridotite and variable C-H-O fluid compositions

The system forsterite-nepheline-quartz is a useful simple system analogue of melting relations in upper mantle peridotite. The liquidus phase fields at 28 kbar differ from those at low pressure by expansion of the enstatite field at the expense of forsterite. The system illustrates a large field of liquid compositions, from model basanites to model quartz tholeiites, which can be derived from one peridotite source. More refractory source compositions permit a greater compositional range of derivative liquid compositions than more fertile compositions and in particular are required as source or parent compositions for enstatite-rich liquids.

Silica-enriched mantle sources of subalkaline picrite-boninite-andesite island arc magmas

Primary arc melts may form through fluxed or adiabatic decompression melting in the mantle wedge, or via a combination of both processes. Major limitations to our understanding of the formation of primary arc melts stem from the fact that most arc lavas are aggregated blends of individual magma batches, further modified by differentiation processes in the sub-arc mantle lithosphere and overlying crust. Primary melt generation is thus masked by these types of second-stage processes. Magma-hosted peridotites sampled as xenoliths in subduction zone magmas are possible remnants of sub-arc mantle and magma generation processes, but are rarely sampled in active arcs. Published studies have emphasised the predominantly harzburgitic lithologies with particularly high modal orthopyroxene in these xenoliths; the former characteristic reflects the refractory nature of these materials consequent to extensive melt depletion of a lherzolitic protolith whereas the latter feature requires additional explanation. Here we present major and minor element data for pristine, mantle-derived, lava-hosted spinel-bearing harzburgite and dunite xenoliths and associated primitive melts from the active Kamchatka and Bismarck arcs. We show that these peridotite suites, and other mantle xenoliths sampled in circum-Pacific arcs, are a distinctive peridotite type not found in other tectonic settings, and are melting residues from hydrous melting of silica-enriched mantle sources. We explore the ability of experimental studies allied with mantle melting parameterisations (pMELTS, Petrolog3) to reproduce the compositions of these arc peri-dotites, and present a protolith ('hybrid mantle wedge') composition that satisfies the available constraints. The composition of peridotite xenoliths recovered from erupted arc magmas plausibly requires their formation initially via interaction of slab-derived components with refractory mantle prior to or during the formation of primary arc melts. The liquid compositions extracted from these hybrid sources are higher in normative quartz and hypersthene (i.e., they have a more silica-saturated character) in comparison with basalts derived from prior melt-depleted asthenospheric mantle beneath ridges. These primary arc melts range from silica-rich picrite to boninite and high-Mg basaltic andesite along a residual spinel harzburgite cotectic. Silica enrichment in the mantle sources of arc-related, subalkaline picrite-boninite-andesite suites coupled with the amount of water and depth of melting, are important for the formation of medium-Fe ('calc-alkaline') andesite-dacite-rhyolite suites, key lithologies forming the continental crust.

Formation and compositional variation of phlogopites in the Horoman peridotite complex, Hokkaido, northern Japan: implications for origin and fractionation of metasomatic fluids in the upper mantle

Contributions to Mineralogy and Petrology, 1989

Abstract. Harzburgite and lherzolite tectonites from the Horoman peridotite complex, Hokkaido, northern Japan, contain variable amounts of secondary phlogopite and amphibole. Phlogopite-rich veinlets parallel to the foliation planes usually cut olivine-rich parts of the rocks; singlegrained interstitial phlogopites are usually associated with orthopyroxene grains. Amphiboles are disseminated in rocks or sometimes occur in the phlogopite-rich veinlets. Within individual veinlets, phlogopites show extensive inter-grain variations in K/(K + Na) ratio (0.96-0.75), generally decreasing from the central (usually the thickest) part towards the marginal parts of veinlets. In contrast, Ti contents are nearly constant in Ti-poor veins or decrease slightly with decreasing K/(K + Na) in T-rich veins. Variation of Ti in phlogopites is very large (0.1 6.8 wt%) and is inversely correlated with Mg/(Mg + Fe*) (Fe*, total iron) atomic ratios, which vary from 0.96 to 0.88. Intra-vein variation of phlogopite chemistry (especially K/(K +Na) ratio) could be achieved by in situ fractional crystallization of trapped fluids; variation of Ti, however, cannot be explained by in situ fractionation of the fluids, indicating various Ti contents of the parent fluids. It is suggested that fluids responsible for the formation of the Horoman phlogopites and amphiboles were magmatic volatiles successively released from evolving alkali basaltic magmas. Individual fluids trapped within peridotites were fractionated, precipitating phlogopites successively poorer in K. When the fluids became rich enough in Na, amphiboles co-precipitated with phlogopites. Similar fractional crystallization of phlogopites and amphiboles is expected in the upper mantle on a larger scale if fluids move upwards. This process may control, at least partly, a lateral K/Na distribution in the upper mantle; K and Na may be concentrated in deeper and shallower parts, respectively.

Experimental phase and melting relations of metapelite in the upper mantle: implications for the petrogenesis of intraplate magmas

Contributions to Mineralogy and Petrology, 2010

We performed a series of piston-cylinder experiments on a synthetic pelite starting material over a pressure and temperature range of 3.0-5.0 GPa and 1,100-1,600°C, respectively, to examine the melting behaviour and phase relations of sedimentary rocks at upper mantle conditions. The anhydrous pelite solidus is between 1,150 and 1,200°C at 3.0 GPa and close to 1,250°C at 5.0 GPa, whereas the liquidus is likely to be at 1,600°C or higher at all investigated pressures, giving a large melting interval of over 400°C. The subsolidus paragenesis consists of quartz/ coesite, feldspar, garnet, kyanite, rutile, ±clinopyroxene ±apatite. Feldspar, rutile and apatite are rapidly melted out above the solidus, whereas garnet and kyanite are stable to high melt fractions ([70%). Clinopyroxene stability increases with increasing pressure, and quartz/coesite is the sole liquidus phase at all pressures. Feldspars are relatively Na-rich [K/(K ? Na) = 0.4-0.5] at 3.0 GPa, but are nearly pure K-feldspar at 5.0 GPa. Clinopyroxenes are jadeite and Ca-eskolaite rich, with jadeite contents increasing with pressure. All supersolidus experiments produced alkaline dacitic melts with relatively constant SiO 2 and Al 2 O 3 contents. At 3.0 GPa, initial melting is controlled almost exclusively by feldspar and quartz, giving melts with K 2 O/Na 2 O *1. At 4.0 and 5.0 GPa, lowfraction melting is controlled by jadeite-rich clinopyroxene and K-rich feldspar, which leads to compatible behaviour of Na and melts with K 2 O/Na 2 O ) 1. Our results indicate that sedimentary protoliths entrained in upwelling heterogeneous mantle domains may undergo melting at greater depths than mafic lithologies to produce ultrapotassic dacitic melts. Such melts are expected to react with and metasomatise the surrounding peridotite, which may subsequently undergo melting at shallower levels to produce compositionally distinct magma types. This scenario may account for many of the distinctive geochemical characteristics of EM-type ocean island magma suites. Moreover, unmelted or partially melted sedimentary rocks in the mantle may contribute to some seismic discontinuities that have been observed beneath intraplate and island-arc volcanic regions.

Partial melting of fertile peridotite fluxed by hydrous rhyolitic melt at 2–3 GPa: implications for mantle wedge hybridization by sediment melt and generation of ultrapotassic magmas in convergent margins

Contributions to Mineralogy and Petrology, 2015

Magmatic Province. Fluxing peridotite with H 2 O versus H 2 O-bearing sediment melt at similar pressures does not appear to have an effect on isobaric melt productivity, but does have significant effect on melting reactions and resultant melt composition, with influx of sediment melt adding K 2 O to the system, thereby stabilizing phlogopite, which in turn buffers the reacted melt to ultrapotassic compositions. Previous experimental studies, along with this study, find that phlogopite can be stable near the hotter core of the mantle wedge and, hence, is likely to be subducted to deeper mantle, thereby influencing deeper cycling of volatiles and large ion lithophile elements. Also, because D Rb phl/melt ≫ D Sr phl/melt and D Nd phl/melt , D Sm phl/melt ≪ 1, long-term stability of phlogopite in the mantle can create 'enriched mantle' domains (εSr and εNd ≥ 0).

Primary Silica-rich Picrite and High-Ca Boninite Melt Inclusions in Pyroxenite Veins from the Kamchatka Sub-arc Mantle

Island arc picrites and boninites are magnesian magmatic rocks believed to be generated by high degrees of melting of depleted mantle sources fluxed by subduction-derived, volatile-rich components. These magmas can be probes of both the mantle wedge protoliths and subduction components , but are rare among other, usually more evolved, types of arc lavas. Furthermore, many arc picrites and boninites show evidence for late-stage differentiation prior to or during eruption, masking their primary, mantle-derived geochemical signatures. We report textural and chemical data on spinel-hosted melt inclusions of mantle origin in amphibole-bearing websterite veins cross-cutting spinel harzburgite xenoliths from the active andesitic Avacha volcano (south Kamchatka, Russia). The data are used to constrain the composition and origin of melts that formed the websterite veins in the sub-arc lithospheric mantle. The melt inclusions typically contain euhedral orthopyroxene and clinopyroxene and occasionally minor amphibole in silicate glass. The melt inclusions were homogenized using heating stages and gas-mixing furnaces. The homogenized glasses range from subalkaline primitive silica-rich picrite and high-Ca boninite (>15 wt % MgO, 48–54 wt % SiO 2) to rhyolite. High-Ca boninite glasses have moderate volatile and low heavy rare earth element contents and elevated Cs, Rb, Ba, U, Sr, and Li abundances, with extremely high U/Th. In turn, the glasses display no negative spikes in the high field strength elements Nb, Ta, Zr, Hf, and Ti. We show that the silica-rich picrite and high-Ca boninite liquids in this study formed by high degrees of melting (>25%), at volatile under-saturation, of hybrid melt-depleted but silica-rich mantle sources at !1Á5 GPa. The hybrid sources formed in two stages: first, by extraction of $15% melt from the convecting mantle to form a refractory protolith, which was subsequently enriched in silica via interaction with subduction-derived components prior to or during remelting in the mantle wedge. The subduction-derived components were enriched in fluid-mobile elements and probably oxidized. Overall, our results suggest that silica-rich picrites and high-Ca boninites can be primary melts in mature subduction zones and differentiate within the mantle wedge and the deep arc crust to form more evolved andesite magmas.

Genesis of volcanic rocks related to subduction zones, geochemical point of view

The application of trace element geochemistry to models of the generation of volcanic rocks in orogenic areas indicates that all three rock associations - tholeiitic, calc-alkaline and shoshonitic - can be produced by anatexis of upper mantle peridotite. The island arc tholeiites are probably formed by partial melting of spinel peridotite while calc-alkaline volcanics are generated by melting of spinel or garnet peridotite overlying the Benioff zone. The contents of LILE in rocks of the two associations require, however, that the upper mantle source had already been enriched in those elements. It is suggested that the svstematic chemical variations with respect to the distance from the trench may reflect changes in the composition of partial melts due to a heterogeneous source and to a variable degree of anatexis. Shoshonitic rocks can be derived from the "normal" upper mantle garnet peridotite by a low degree of partial melting and do not appear to be related directly to the subduction zones. Such a model provides an explanation to the spatial zonation according to the distance of the trench ; it does not exclude the role of a crustal contamination.