Getting Lucky with Adaptive Optics: Fast Adaptive Optics Image Selection in the Visible with a Large Telescope (original) (raw)

Getting lucky with adaptive optics: diffraction-limited resolution in the visible with current AO systems on large and small telescopes

Adaptive Optics Systems, 2008

We have recently demonstrated diffraction-limited resolution imaging in the visible on the 5m Palomar Hale telescope. The new LAMP instrument is a Lucky Imaging backend camera for the Palomar AO system. Typical resolutions of 35-40 mas with Strehls of 10-20% were achieved at 700nm, and at 500nm the FWHM resolution was as small as 42 milliarcseconds. In this paper we discuss the capabilities and design challenges of such a system used with current and near future AO systems on a variety of telescopes. In particular, we describe the designs of two planned Lucky Imaging + AO instruments: a facility instrument for the Palomar 200" AO system and its PALM3K upgrade, and a visible-light imager for the CAMERA low-cost LGS AO system planned for the Palomar 60" telescope. We introduce a Monte Carlo simulation setup that reproduces the observed PSF variability behind an adaptive optics system, and apply it to predict the performance of 888Cam and CAMERA. CAMERA is predicted to achieve diffraction-limited resolution at wavelengths as short as 350 nm. In addition to on-axis resolution improvements we discuss the results of frame selection with the aim of improving other image parameters such as isoplanatic patch sizes, showing that useful improvements in image quality can be made by Lucky+AO even with very temporally and spatially undersampled data.

New challenges for adaptive optics: extremely large telescopes

Monthly Notices of the Royal Astronomical Society, 2000

The performance of an adaptive optics (AO) system on a 100-m diameter ground-based telescope working in the visible range of the spectrum is computed using an analytical approach. The target Strehl ratio of 60 per cent is achieved at 0.5 mm with a limiting magnitude of the AO guide source near R magnitude , 10Y at the cost of an extremely low sky coverage. To alleviate this problem, the concept of tomographic wavefront sensing in a wider field of view using either natural guide stars (NGS) or laser guide stars (LGS) is investigated. These methods use three or four reference sources and up to three deformable mirrors, which increase up to 8-fold the corrected field size (up to 60 arcsec at 0.5 mm). Operation with multiple NGS is limited to the infrared (in the J band this approach yields a sky coverage of 50 per cent with a Strehl ratio of 0.2). The option of open-loop wavefront correction in the visible using several bright NGS is discussed. The LGS approach involves the use of a faint R , 22 NGS for low-order correction, which results in a sky coverage of 40 per cent at the Galactic poles in the visible.

Astronomical Adaptive Optics at the Indian Institute of Astrophysics

2020

Astronomical Adaptive Optics (AO) technology enables real time diffraction-limited imaging and spectroscopy with high sensitivity from groundbased telescopes. It is achieved by using corrective optical elements in the path of the light beam before the final image is formed. The Indian Institute of Astrophysics is deliberating on building new large solar and stellar telescopes, namely the National Large Solar Telescope (NLST) and the National Large Optical Telescope (NLOT) equipped with AO. In view of this, an AO program has been initiated at IIA, with the primary objective of generating expertise in the field of astronomical adaptive optics by developing and demonstrating AO systems in existing small telescopes. In this paper, we start with an overview of astronomical adaptive optics and elaborate on the AO related activities carried out at IIA. Mr. Hemanth Pruthvi was affiliated with IIA till April 2019.

Adaptive optics for high contrast imaging

SPIE Proceedings, 2012

The development of adaptive optics (AO) played a major role in modern astronomy over the last three decades. By compensating for the atmospheric turbulence, these systems enable to reach the diffraction limit on large telescopes. In this review, we will focus on high contrast applications of adaptive optics, namely, imaging the close vicinity of bright stellar objects and revealing regions otherwise hidden within the turbulent halo of the atmosphere to look for objects with a contrast ratio lower than 10 −4 with respect to the central star. Such high-contrast AO-corrected observations have led to fundamental results in our current understanding of planetary formation and evolution as well as stellar evolution. AO systems equipped three generations of instruments, from the first pioneering experiments in the nineties, to the first wave of instruments on 8m-class telescopes in the years 2000, and finally to the extreme AO systems that have recently started operations. Along with highcontrast techniques, AO enables to reveal the circumstellar environment: massive protoplanetary disks featuring spiral arms, gaps or other asymetries hinting at ongoing planet formation, young giant planets shining in thermal emission, or tenuous debris disks and micron-sized dust leftover from collisions in massive asteroid-belt analogs. After introducing the science case and technical requirements, we will review the architecture of standard and extreme AO systems, before presenting a few selected science highlights obtained with recent AO instruments.

SAOLIM, Prototype of a Low-Cost System for Adaptive Optics with Lucky Imaging. Design and Performance

Publications of the Astronomical Society of the Pacific, 2010

A prototype of a low cost Adaptive Optics (AO) system has been developed at the Instituto de Astrofisica de Andalucia (CSIC) and tested at the 2.2m telescope of the Calar Alto observatory. We present here the status of the project, which includes the image stabilization system and compensation of high order wavefront aberrations with a membrane deformable mirror. The image stabilization system consists of magnet driven tip-tilt mirror. The higher order compensation system comprises of a Shack-Hartmann sensor, a membrane deformable mirror with 39 actuators and the control computer that allows operations up to 420Hz in closed loop mode. We have successfully closed the high order AO loop on natural guide stars. An improvement of 4 times in terms of FWHM was achieved. The description and the results obtained on the sky are presented in this paper.

Adaptive Optics and Lucky Imager (AOLI): presentation and first light

In this paper we present the Adaptive Optics Lucky Imager (AOLI), a state-of-the-art instrument which makes use of two well proved techniques for extremely high spatial resolution with ground-based telescopes: Lucky Imaging (LI) and Adaptive Optics (AO). AOLI comprises an AO system, including a low order non-linear curvature wavefront sensor together with a 241 actuators deformable mirror, a science array of four 1024x1024 EMC-CDs, allowing a 120x120 down to 36x36 arcseconds field of view, a calibration subsystem and a powerful LI software. Thanks to the revolutionary WFS, AOLI shall have the capability of using faint reference stars (I ∼ 16.5-17.5), enabling it to be used over a much wider part of the sky than with common Shack-Hartmann AO systems. This instrument saw first light in September 2013 at William Herschel Telescope. Although the instrument was not complete, these commissioning demonstrated its feasibility, obtaining a FWHM for the best PSF of 0.151±0.005 arcsec and a plate scale of 55.0±0.3 mas/pixel. Those observations served us to prove some characteristics of the interesting multiple T Tauri system LkHα 262-263, finding it to be gravitationally bounded. This interesting multiple system mixes the presence of proto-planetary discs, one proved to be double, and the first-time optically resolved pair LkHα 263AB (0.42 arcsec separation).

AOLI: near-diffraction limited imaging in the visible on large ground-based telescopes

Ground-based and Airborne Instrumentation for Astronomy VI, 2016

The combination of Lucky Imaging with a low order adaptive optics system was demonstrated very successfully on the Palomar 5m telescope nearly 10 years ago. It is still the only system to give such high-resolution images in the visible or near infrared on ground-based telescope of faint astronomical targets. The development of AOLI for deployment initially on the WHT 4.2 m telescope in La Palma, Canary Islands, will be described in this paper. In particular, we will look at the design and status of our low order curvature wavefront sensor which has been somewhat simplified to make it more efficient, ensuring coverage over much of the sky with natural guide stars as reference object. AOLI uses optically butted electron multiplying CCDs to give an imaging array of 2000 x 2000 pixels.

Adaptive optics for Extremely Large Telescopes

Proceedings of the International Astronomical Union, 2005

Adaptive Optics (AO) will be essential for accomplishing many, if not most, of the science objectives currently planned for Extremely Large Telescopes including GMT, OWL, and TMT. AO will be needed to support a range of instrumentation, including near infrared (IR) imagers and spectrometers, mid IR imagers and spectrometers, "planet finding" instrumentation and wide-field optical spectrographs. Multiple advanced AO systems, utilizing the full range of concepts currently under development, will need to be combined into an integrated architecture to meet a broad range of requirements for field-of-view, spatial resolution and spectral bandpass. In this paper, we describe several of the possible options for these systems and outline the range of issues, trade studies and component development activities which must be addressed. Some of these challenges include very high-order, large-stroke wavefront correction, tip-tilt sensing with faint natural guide stars to maximize sky coverage, laser guide star wavefront sensing on a very large aperture and achieving extremely high contrast ratios for the detection of extra-solar planet and other faint companions of nearby bright stars.

Enabling Technologies for Visible Adaptive Optics: The Magellan Adaptive Secondary VisAO Camera

2010

Since its beginnings, diffraction-limited ground-based adaptive optics (AO) imaging has been limited to wavelengths in the near IR ({\lambda} > 1 micron) and longer. Visible AO ({\lambda} < 1 micron) has proven to be difficult because shorter wavelengths require wavefront correction on very short spatial and temporal scales. The pupil must be sampled very finely, which requires dense actuator spacing and fine wavefront sampling with large dynamic range. In addition, atmospheric dispersion is much more significant in the visible than in the near-IR. Imaging over a broad visible band requires a very good Atmospheric Dispersion Corrector (ADC). Even with these technologies, our AO simulations using the CAOS code, combined with the optical and site parameters for the 6.5m Magellan telescope, demonstrate a large temporal variability of visible ({\lambda}=0.7 micron) Strehl on timescales of 50 ms. Over several hundred milliseconds, the visible Strehl can be as high at 50% and as low as 10%. Taking advantage of periods of high Strehl requires either the ability to read out the CCD very fast, thereby introducing significant amounts of read-noise, or the use of a fast asynchronous shutter that can block the low-Strehl light. Our Magellan VisAO camera will use an advanced ADC, a high-speed shutter, and our 585 actuator adaptive secondary to achieve broadband (0.5-1.0 micron) diffraction limited images on the 6.5m Magellan Clay telescope in Chile at Las Campanas Observatory. These will be the sharpest and deepest visible direct images taken to date with a resolution of 17 mas, a factor of 2.7 better than the diffraction limit of the Hubble Space Telescope.