On the extension of the Erdös-Mordell type inequalities (original) (raw)
Abstract
We discuss the extension of inequality R A ≥ c a r b + b a r c to the plane of triangle △ABC . Based on the obtained extension, in regard to all three vertices of the triangle, we get the extension of Erdös-Mordell inequality, and some inequalities of Erdös-Mordell type.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (31)
- C. ALSINA, R. B. NELSEN, A Visual Proof of the Erdös-Mordell Inequality, Forum Geom. 7 (2007), 99-102.
- C. ALSINA, R.B. NELSEN, When Less is More : Visualizing Basic Inequalities, Math. Association of America, Ch. 7 (pp. 93-99.), 2009.
- A. AVEZ, A Short Proof of a Theorem of Erdös and Mordell, Amer. Math. Monthly 100, 1 (1993), 60- 62.
- L. BANKOFF, An elementary proof of the Erdös-Mordell theorem, Amer. Math. Monthly 65 (1958), 521.
- M. BOMBARDELLI, S.H. WU, Reverse inequalities of Erdös-Mordell type, Math. Inequal. Appl., 12, 2 (2009), 403-411.
- O. BOTTEMA, R. Ž. DJORDJEVI Ć, R.R. JANI Ć, D.S. MITRINOVI Ć, P.M. VASI Ć, Geometric In- equalities, Wolters-Noordhoff, Groningen 1969.
- J.M. CHILD, Inequalities Connected with a Triangle, The Math. Gazette 23, No. 254 (1939), 138-143.
- N. DERGIADES, Signed distances and the Erdös-Mordell inequality, Forum Geom. 4 (2004), 67-68.
- P. ERD ÖS, Problem 3740, Amer. Math. Monthly 42 (1935), 396.
- W. JANOUS, Further Inequalities of Erdös-Mordell Type, Forum Geom. 4 (2004), 203-206.
- D.K. KAZARINOFF, A simple proof of the Erdös-Mordell inequality for triangles, Michigan Mathe- matical Journal 4 (1957), 97-98.
- N.D. KAZARINOFF, Geometric inequalities, New Math. Library, Vol. 4, Yale 1961, (pp. 78-79, 86).
- V. KOMORNIK, A short proof of the Erdös-Mordell theorem, Amer. Math. Monthly 104 (1997), 57-60.
- H. LEE, Another Proof of the Erdös-Mordell theorem, Forum Geometricorum 1 (2001), 7-8.
- J. LIU, A Weighted Erdös-Mordell Inequation and Its Application, Journ. f Luoyang Norm. Univ. 5 (2002), doi: CNKI:SUN:LSZB.0.2002-05-005
- J. LIU, ZH.-H. ZHANG, An Erdös-Mordell Type Inequality on the Triangle, RGMIA 7 (1), 2004.
- J. LIU, A new proof of the Erdös-Mordell inequality, International Electronic Journal of Geometry 4, 2 (2011), 114-119.
- J. LIU, Some new inequalities for an interior point of a triangle, Journal of Mathematical Inequalities, Volume 6, Number 2 (2012), 195-204.
- Z. LU, Erdös-Mordell type inequalities, Elemente der Mathematik 63, 1 (2008), 23-24.
- B. MALE ŠEVI Ć, Erdös theorem in the plane of the triangle, Proceedinngs of XI and XII Meeting of Mathematical Faculty Students of Yugoslavia 1985, 245-250. (see also [21] (1988), pp. 318-320.)
- D.S. MITRINOVI Ć, J.E. PE ČARI Ć, V. VOLENEC, Recent Advances in Geometric Inequalities, Kluwer Academic Publishers, Dordrecht-Boston-London 1988.
- L.J. MORDELL, Solution of Problem 3740, Amer. Math. Monthly 44, 4 (1937), 252-254.
- A. OPPENHEIM, Some inequalities for a spherical triangle and an internal point, Pub. Elektrotehn. Fak. Ser. Mat. et Phys., Univ. of Belgrade, No. 203 (1967), 13-16.
- V. PAMBUCCIAN, The Erdös-Mordell inequality is equivalent to non-positive curvature, Journal of Geometry 88, (2008), 134-139.
- R.A. SATNOIANU, Erdös-Mordell Type Inequalities in a Triangle, Amer. Math. Monthly 110, 8 (2003), 727-729.
- G.R. VELDKAMP, The Erdös-Mordell Inequality, Nieuw Tijdschr.Wisk 45 (1957/58), 193-196.
- J. WARENDORFF: Erdös-Mordell inequality, WOLFRAM Demonstraction Project 2012. http://demonstrations.wolfram.com/TheErdoesMordellInequality/
- Y-D. WU, A New Proff of a Weighted Erdös-Mordell Type Inequalities, Forum Geom. 8 (2008), 163- 166.
- Y-D. WU, C-L. YU, Z-H. ZHANG, A Geometric Inequality of the Generalized Erdös-Mordell Type, J. Inequal. Pure and Appl. Math. 10, 4 (2009).
- Y-D. WU, L. ZHOU, Some New Weighted Erdös-Mordell Type Inequalities, Int. J. Open Problems Compt. Math. 4 (2), June 2011.
- Branko Malešević ( CORRESPONDING AUTHOR ) Faculty of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade, Serbia e-mail: malesevic@etf.rs Maja Petrović ( CORRESPONDING AUTHOR ) Faculty of Transport and Traffic Engineering, University of Belgrade, Vojvode Stepe 305, 11000 Belgrade, Serbia e-mail: majapet@sf.bg.ac.rs Marija Obradović, Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade, Serbia e-mail: marijao@grf.bg.ac.rs