Atomic force microscopy as a tool to study the proteasome assemblies (original) (raw)
Related papers
Atomic force microscopy of the proteasome
Methods in enzymology, 2005
The proteasome should be an ideal molecule for studies on large enzymatic complexes, given its multisubunit and modular structure, compartmentalized design, numerous activities, and its own means of regulation. Considering the recent increased interest in the ubiquitin-proteasome pathway, it is surprising that biophysical approaches to study this enzymatic assembly are applied with limited frequency. Methods including atomic force microscopy, fluorescence spectroscopy, surface plasmon resonance, and high-pressure procedures all have gained popularity in characterization of the proteasome. These methods provide significant and often unexpected insight regarding the structure and function of the enzyme. This chapter describes the use of atomic force microscopy for dynamic structural studies of the proteasome.
Atomic Force Microscopy Reveals Two Conformations of the 20 S Proteasome from Fission Yeast
Journal of Biological Chemistry, 2000
The proteasome is a major cytosolic proteolytic complex, indispensable in eukaryotic cells. The barrelshaped core of this enzyme, the 20 S proteasome, is built from 28 subunits forming four stacked rings. The two inner -rings harbor active centers, whereas the two outer ␣-rings play a structural role. Crystal structure of the yeast 20 S particle showed that the entrance to the central channel was sealed. Because of this result, the path of substrates into the catalytic chamber has remained enigmatic. We have used tapping mode atomic force microscopy (AFM) in liquid to address the dynamic aspects of the 20 S proteasomes from fission yeast. We present here evidence that, when observed with AFM, the proteasome particles in top view position have either open or closed entrance to the central channel. The preferred conformation depends on the ligands present. Apparently, the addition of a substrate to the uninhibited proteasome shifts the equilibrium toward the open conformation. These results shed new light on the possible path of the substrate into the proteolytic chamber.
Biochemistry, 2002
The proteasome is a major cytosolic proteolytic assembly, essential for the physiology of eukaryotic cells. Both the architecture and enzymatic properties of the 20S proteasome are relatively well understood. However, despite longstanding interest, the integration of structural and functional properties of the proteasome into a coherent model explaining the mechanism of its enzymatic actions has been difficult. Recently, we used tapping mode atomic force microscopy (AFM) in liquid to demonstrate that the R-rings of the proteasome imaged in a top-view position repeatedly switched between their open and closed conformations, apparently to control access to the central channel. Here, we show with AFM that the molecules in a side-view position acquired two stable conformations. The overall shapes of the 20S particles were classified as either barrel-like or cylinder-like. The relative abundance of the two conformers depended on the nature of their interactions with ligands. Similarly to the closed molecules in top view, the barrels predominated in control or inhibited molecules. The cylinders and open molecules prevailed when the proteasome was observed in the presence of peptide substrates. Based on these data, we developed the two-state model of allosteric transitions to explain the dynamics of proteasomal structure. This model helps to better understand the observed properties of the 20S molecule, and sets foundations for further studies of the structural dynamics of the proteasome.
Molecular Architecture and Assembly of the Eukaryotic Proteasome
Annual Review of Biochemistry, 2013
The eukaryotic ubiquitin-proteasome system is responsible for most cellular quality-control and regulatory protein degradation. Its substrates, which are usually modified by polymers of ubiquitin, are ultimately degraded by the 26S proteasome. This 2.6 MDa protein complex is separated into a barrel-shaped proteolytic 20S core particle (CP) of 28 subunits capped on one or both ends by a 19S regulatory particle (RP) comprising at least 19 subunits. The RP coordinates substrate recognition, removal of substrate polyubiquitin chains, and substrate unfolding and translocation into the CP for degradation. While many atomic structures of the CP have been determined, the RP has resisted high-resolution analysis. Recently, however, a combination of cryo-electron microscopy (cryo-EM), biochemical analysis, and crystal structure determination of several RP subunits has yielded a near-atomic resolution view of much of the complex. Major new insights into chaperone-assisted proteasome assembly have also recently been made. Here we review these novel findings.
Biochemical Journal, 1993
The multicatalytic proteinase complex or proteasome is a high-molecular-mass multisubunit proteinase which is found in the nucleus and cytoplasm of eukaryotic cells. Electron microscopy of negatively stained rat liver proteinase preparations suggests that the particle has a hollow cylindrical shape (approximate width 11 nm and height 17 nm using methylamine tungstate as the negative stain) with a pseudo-helical arrangement of subunits rather than the directly stacked arrangement suggested previously. The side-on view has a 2-fold rotational symmetry, while end-on there appears to be six or seven subunits around the ring. This model is very different from that proposed by others for the proteinase from rat liver but resembles the structure of the simpler archaebacterial proteasome. The possibility of conformational changes associated with the addition of effectors of proteolytic activity has been investigated by sedimentation velocity analysis and dynamic light-scattering measurement...
26S Proteasome Structure Revealed by Three-dimensional Electron Microscopy
Journal of Structural Biology, 1998
In 26S proteasomes, ''19S cap complexes'' associate with either one or both ends of the barrel-shaped 20S core complex. These regulatory complexes which comprise about 20 different subunits, including 6 ATPases of the AAA family, are thought to recognize ubiquitinated substrate proteins, to dissociate and unfold them before threading them into the 20S core where they are degraded. Here, we examine the structure of 26S proteasomes from Drosophila embryos and Xenopus oocytes by electron microscopy. Image analysis reveals a rather flexible linkage between the 19S caps and the 20S core, with a peculiar wagging-type movement of the caps relative to the core. At this stage of the analysis, it is not clear whether this movement is relevant in terms of function. Three-dimensional reconstructions, taking this into account, provide first insights into the remarkably complex structure of the 19S caps and allows us to put forward a composite model of the
Automated cryoelectron microscopy of “single particles” applied to the 26S proteasome
FEBS Letters, 2007
The 26S proteasome is a large molecular machine with a central role in intracellular protein degradation in eukaryotes. The 2.5 MDa complex, which is built from two copies each of more than 30 different subunits, is labile and prone to dissociation into subcomplexes. Hence it is difficult if not impossible, to obtain structurally homogeneous preparations and, as a consequence, it is very cumbersome to obtain large numbers of images of the holocomplex. In this communication, we describe an automated procedure for the acquisition of large data sets of cryoelectron micrographs. The application of this procedure to the 26S proteasome from Drosophila has allowed us to determine the three-dimensional structure of the complex to a resolution of 2.9 nm and the prospects for further improvements are good.
Near-atomic resolution structural model of the yeast 26S proteasome
Proceedings of the National Academy of Sciences, 2012
The 26S proteasome operates at the executive end of the ubiquitinproteasome pathway. Here, we present a cryo-EM structure of the Saccharomyces cerevisiae 26S proteasome at a resolution of 7.4 Å or 6.7 Å (Fourier-Shell Correlation of 0.5 or 0.3, respectively). We used this map in conjunction with molecular dynamics-based flexible fitting to build a near-atomic resolution model of the holocomplex. The quality of the map allowed us to assign α-helices, the predominant secondary structure element of the regulatory particle subunits, throughout the entire map. We were able to determine the architecture of the Rpn8/Rpn11 heterodimer, which had hitherto remained elusive. The MPN domain of Rpn11 is positioned directly above the AAA-ATPase N-ring suggesting that Rpn11 deubiquitylates substrates immediately following commitment and prior to their unfolding by the AAA-ATPase module. The MPN domain of Rpn11 dimerizes with that of Rpn8 and the C-termini of both subunits form long helices, which are integral parts of a coiled-coil module. Together with the C-terminal helices of the six PCI-domain subunits they form a very large coiled-coil bundle, which appears to serve as a flexible anchoring device for all the lid subunits.
Proteasome: from structure to function
Current Opinion in Biotechnology, 1996
During the past two years, significant progress has been made in understanding the structure and function of the proteasome. Recent work has revealed the three-dimensional structure of the 700 kDa proteolytic complex at atomic resolution and elucidated its novel catalytic mechanism. Close relationships to a number of other amino-terminal hydrolases have emerged, making the proteasomal subunits the prototype of this newly discovered structural superfamily.