Byers Peninsula: A reference site for coastal, terrestrial and limnetic ecosystem studies in maritime Antarctica (original) (raw)

A review of scientific research trends within ASPA No. 126 Byers Peninsula, South Shetland Islands, Antarctica

Antarctic Science, 2013

Byers Peninsula, Livingston Island, was one of the first sites in Antarctica designated for environmental conservation and scientific protection. Research on Byers Peninsula has been predominantly international, with 88 indexed publications (93% of them published during last 20 years) from 209 authors affiliated to 110 institutions from 22 nations, all of which are signatories to the Antarctic Treaty. Palaeontological research represented 20% of the published articles. The variety of freshwater bodies within the area has made Byers Peninsula a reference site for limnological studies (24% of papers). The site also contains numerous outcrops and periglacial features relevant to geology, stratigraphy and geomorphology (29%). Terrestrial biodiversity is extraordinarily high for lichens, bryophytes and invertebrates (15% of articles). Only 5% of the publications concern research on human activities, including both archaeology and impact monitoring. Glaciology, meteorology and climatology studies represent only 7% of papers. This work highlights the international and multidisciplinary nature of science conducted on Byers Peninsula in order to promote international cooperation and to provide information relevant for environmental management and conservation.

Historical observations and paleoecological records reveal ecological transitions in the Antarctic Peninsula region

2006

393 M ounting evidence suggests that the earth is experiencing a period of rapid climate change. Never before has it been so important to understand how environmental change influences the earth’s biota and to distinguish anthropogenic change from natural variability. Long-term studies in the western Antarctic Peninsula (WAP) region provide the opportunity to observe how changes in the physical environment are related to changes in the marine ecosystem. Analyses of paleoc limate records (MosleyThompson 1992, Peel 1992, Domack et al. 1993, Thompson et al. 1994, Dai et al. 1995, Domack and McClennen 1996, Leventer et al. 1996) have shown that the WAP region has moved from a relatively cold regime between approximately 2700 BP and 100 BP, to a relatively warm regime during the current century. Air temperature records from the last half-century show a dramatic warming trend, confirming the rapidity of change in the WAP area (Sansom 1989, Stark 1994, Rott et al. 1996, Smith et al. 1996)....

Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in maritime Antarctica

Polar Biology, 2007

A limnological survey of 15 lakes and 6 streams was carried out on Byers Peninsula (Livingston Island, South Shetland Islands, Antarctica) during austral summer 2001–2002. Most of the surface waters had low conductivities (20–105 μS cm−1) and nutrients (total phosphorus 0.01–0.24 μM), but some coastal lakes were enriched by nutrient inputs from seal colonies and marine inputs. Plankton communities in the lakes contained picocyanobacteria (102–104 cells ml−1), diatoms, chrysophytes and chlorophytes, and a large fraction of the total biomass was bacterioplankton. Zooplankton communities were dominated by Boeckella poppei and Branchinecta gainii; the benthic cladoceran Macrothrix ciliata was also recorded, for the first time in Antarctica. The chironomids Belgica antarctica and Parochlus steinenii, and the oligochaete Lumbricillus sp., occurred in stream and lake benthos. The phytobenthos included cyanobacterial mats, epilithic diatoms and the aquatic moss Drepanocladus longifolius. These observations underscore the limnological richness of this seasonally ice-free region in maritime Antarctica and its value as a long-term reference site for monitoring environmental change.

Marine pelagic ecosystems: the West Antarctic Peninsula

Philosophical Transactions of the Royal Society B: Biological Sciences, 2007

The marine ecosystem of the West Antarctic Peninsula (WAP) extends from the Bellingshausen Sea to the northern tip of the peninsula and from the mostly glaciated coast across the continental shelf to the shelf break in the west. The glacially sculpted coastline along the peninsula is highly convoluted and characterized by deep embayments that are often interconnected by channels that facilitate transport of heat and nutrients into the shelf domain. The ecosystem is divided into three subregions, the continental slope, shelf and coastal regions, each with unique ocean dynamics, water mass and biological distributions. The WAP shelf lies within the Antarctic Sea Ice Zone (SIZ) and like other SIZs, the WAP system is very productive, supporting large stocks of marine mammals, birds and the Antarctic krill, Euphausia superba. Ecosystem dynamics is dominated by the seasonal and interannual variation in sea ice extent and retreat. The Antarctic Peninsula is one among the most rapidly warming regions on Earth, having experienced a 28C increase in the annual mean temperature and a 68C rise in the mean winter temperature since 1950. Delivery of heat from the Antarctic Circumpolar Current has increased significantly in the past decade, sufficient to drive to a 0.68C warming of the upper 300 m of shelf water. In the past 50 years and continuing in the twenty-first century, the warm, moist maritime climate of the northern WAP has been migrating south, displacing the once dominant cold, dry continental Antarctic climate and causing multi-level responses in the marine ecosystem. Ecosystem responses to the regional warming include increased heat transport, decreased sea ice extent and duration, local declines in icedependent Adélie penguins, increase in ice-tolerant gentoo and chinstrap penguins, alterations in phytoplankton and zooplankton community composition and changes in krill recruitment, abundance and availability to predators. The climate/ecological gradients extending along the WAP and the presence of monitoring systems, field stations and long-term research programmes make the region an invaluable observatory of climate change and marine ecosystem response.

Terrestrial ecosystems of the Antarctic Peninsula and their responses to climate change and anthropogenic impacts

2020

Antarctica and the Southern Ocean are unique natural laboratories where organisms adapted to extreme environmental conditions have evolved in isolation for millions of years. These unique biotic communities on Earth are facing complex climatic and environmental changes. Terrestrial ecosystems in the Antarctic Peninsula Region (APR) have experienced the highest rate of climate warming and, being the most impacted by human activities, are facing the greatest risk of detrimental changes. This review provides an overview of the most recent findings on how biotic communities in terrestrial ecosystems of the Antarctic Peninsula Region (APR) are responding and will likely respond to further environmental changes and direct anthropogenic impacts. Knowledge gained from studies on relatively simple terrestrial ecosystems could be very useful in predicting what may happen in much more complex ecosystems in regions with less extreme temperature changes. The rapid warming of the APR has led to t...