Caspase-3 Cleaves and Inactivates the Glutamate Transporter EAAT2 (original) (raw)
Journal of Cell Science, 2004
It has been suggested that glutamate-induced excitotoxicity plays a central role in the development of motor neuron diseases such as amyotrophic lateral sclerosis (ALS). The GLT-1 isoform of the glutamate transporter gene family is the most important transporter involved in keeping extracellular glutamate concentration below neurotoxic levels. Its loss and an increase in extracellular glutamate has been documented in cases of sporadic and familial ALS, as well as in animal models expressing ALS-linked Cu2+-Zn2+ superoxide dismutase (SOD1) mutations, but the underlying molecular mechanisms are still unclear. We developed and characterised a cell model consisting of polarised epithelial Madin-Darby Canine Kidney (MDCK) cell lines stably expressing wild-type SOD1 or the ALS-linked SOD1 G93A mutant, and analysed the expression of glutamate transporters after transient transfection of the corresponding cDNAs. Like ALS patients and animal models of ALS, the G93A-expressing MDCK cell system showed reduced total glial GLT-1 expression, with no change in the expression of the neuronal EAAC1 glutamate transporter isoform. Morphological analysis revealed the intracellular redistribution of GLT-1 to acidic compartments, whereas the surface distribution of other glutamate transporters (neuronal EAAC1 and glial GLAST) was not affected. Moreover, mutant SOD1 affected the cytosolic tail of GLT-1 because reduced protein expression of EAAC-GLT but not GLT-EAAC chimeras was found in G93A-expressing cell lines. GLT-1 downregulation was greatly induced by inhibition of protein synthesis, and prevented by treatment with chloroquine aimed at inhibiting the activity of acidic degradative compartments. Negligible effect on the protein level or distribution of GLT-1 was observed in cells overexpressing wild-type SOD1. The specific decrease in the GLT-1 isoform of glutamate transporters is therefore recapitulated in G93A-expressing MDCK cell lines, thus suggesting an autonomous cell mechanism underlying the loss of GLT-1 in ALS. Our data indicate that the continuous expression of mutant SOD1 causes the downregulation of GLT-1 by increasing the internalisation and degradation of the surface transporter, and suggest that the cytosolic tail of GLT-1 is required to target the transporter to degradation.
Journal of Biological Chemistry, 2007
4 The abbreviations used are: ALS, amyotrophic lateral sclerosis; SOD1, Cu 2ϩ / Zn 2ϩ superoxide dismutase; mutSOD1, mutated SOD1; WT-SOD1, wild type SOD1; SUMO, small ubiquitin modifier protein; PML, promyelocytic leukemia; PML-NB, PML nuclear body; E1, ubiquitin-activating enzyme; E2, ubiquitin carrier protein; E3, ubiquitin-protein isopeptide ligase; PBS, phosphate-buffered saline; CTE, COOH terminus of EAAT2; CHAPS, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid; mAb, monoclonal antibody; HD, Huntington disease; EGFP, enhanced green fluorescent protein; Tricine, N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine; DAPI, 4Ј,6-diamidino-2phenylindole.
Journal of Biological Chemistry, 2001
We have investigated the functional impact of a naturally occurring mutation of the human glutamate transporter GLT1 (EAAT2), which had been detected in a patient with sporadic amyotrophic lateral sclerosis. The mutation involves a substitution of the putative N-linked glycosylation site asparagine 206 by a serine residue (N206S) and results in reduced glycosylation of the transporter and decreased uptake activity. Electrophysiological analysis of N206S revealed a pronounced reduction in transport rate compared with wild-type, but there was no alteration in the apparent affinities for glutamate and sodium. In addition, no change in the sensitivity for the specific transport inhibitor dihydrokainate was observed. However, the decreased rate of transport was associated with a reduction of the N206S transporter in the plasma membrane. Under ionic conditions, which favor the reverse operation mode of the transporter, N206S exhibited an increased reverse transport capacity. Furthermore, if coexpressed in the same cell, N206S manifested a dominant negative effect on the wild-type GLT1 activity, whereas it did not affect wild-type EAAC1. These findings provide evidence for a role of the N-linked glycosylation in both cellular trafficking and transport function. The resulting alteration in glutamate clearance capacity likely contributes to excitotoxicity that participates in motor neuron degeneration in amyotrophic lateral sclerosis.
Journal of the Neurological Sciences, 1999
Impaired re-uptake of synaptic glutamate, and a reduced expression of the glutamate transporter EAAT2 have been found in the motor cortex of patients with amyotrophic lateral sclerosis (ALS). Two splice forms of the EAAT2 RNA resulting from retention of intronic sequences (EAAT2 / Int) and deletion of one protein coding exon (EAAT2 / C1) have been reported to account for the EAAT2 protein loss in ALS. In this study we investigated the presence of two known (EAAT2 / C1; EAAT2 / Int) and three novel (EAAT2 / C2-4) EAAT2 RNA in motor cortex of 17 ALS cases and 11 controls. Reverse transcription and PCR were carried out to amplify the complementary DNA of the complete and variably spliced EAAT2 transcripts. Nested PCR was followed to generate amplicons specific for EAAT2 / C1-4 and EAAT2 / Int. EAAT2 / Int was detected in 59% of ALS specimens as compared to 36% of controls showing a trend but no statistical significance of a more frequent expression in ALS (Type I error 24.6%). EAAT2 / C1-4 were found to be equally expressed in ALS patients and controls. Our results indicate that the involvement of EAAT2 transcripts in ALS is unlikely to be primary, and more complex than previously recognized. Alterations of quantitative expression of distinct EAAT2 splice forms in ALS cannot be excluded from this study and remain to be investigated.
Molecular and Cellular Mechanisms Affected in ALS
Journal of Personalized Medicine
Amyotrophic lateral sclerosis (ALS) is a terminal late-onset condition characterized by the loss of upper and lower motor neurons. Mutations in more than 30 genes are associated to the disease, but these explain only ~20% of cases. The molecular functions of these genes implicate a wide range of cellular processes in ALS pathology, a cohesive understanding of which may provide clues to common molecular mechanisms across both familial (inherited) and sporadic cases and could be key to the development of effective therapeutic approaches. Here, the different pathways that have been investigated in ALS are summarized, discussing in detail: mitochondrial dysfunction, oxidative stress, axonal transport dysregulation, glutamate excitotoxicity, endosomal and vesicular transport impairment, impaired protein homeostasis, and aberrant RNA metabolism. This review considers the mechanistic roles of ALS-associated genes in pathology, viewed through the prism of shared molecular pathways.
Experimental Neurology, 1996
Previous studies have suggested that defective highaffinity glutamate uptake, due mainly to a major loss of the astroglial-specific GLT-1 glutamate transporter, underlies the selective motoneuron degeneration observed in sporadic ALS (24, 28). If a defect in glutamate transport underlies the pathogenesis of sporadic ALS, the glutamate transporter subtype found to be lost in sporadic ALS should be present in abundance in the affected motor nuclei under normal conditions. To investigate this, we used immunohistochemical methods to analyze the localization of two subtypes of high-affinity glutamate transporters in the cranial motor nuclei of normal monkey brain stem: GLT-1, localized to astroglia; and EAAC1, localized to neurons. Our results indicated that all motor cell groups of monkey brain stem are rich in the GLT-1 glutamate transporter, which is localized to astroglial cells and processes that surround and envelop motoneuron cell bodies and dendrites. Image analysis indicated that the abundance of GLT-1 immunoreactive astroglial elements in ALS-vulnerable motor cell groups (i.e., the trigeminal, facial, and hypoglossal motor cell groups) is higher than in ALS-resistant motor cell groups (i.e., the oculomotor, trochlear, and abducens motor cell groups), and statistical analysis showed that this difference is significant. Our results also indicated that both ALS-vulnerable and ALS-resistant motor cell groups of monkey brain stem are relatively poor in EAAC1 immunoreactivity. Therefore, in the case of a loss in the GLT-1 glutamate transporter in sporadic ALS, glutamate may increase in the vicinity of motoneurons in all brain-stem motor cell groups, but especially in the ALS-vulnerable motor cell groups, which are normally richer in GLT-1. Increased extracellular glutamate could lead to excess entry of Ca 21 into motoneurons via glutamate-gated or voltage-activated Ca 21 channels and produce degeneration of those motoneurons unable to resist the insult. Since motoneurons in the ALS-resistant motor cell groups of the brain stem are enriched in the Ca 21 buffering protein parvalbumin, they should be better able to resist the damage than the majority of motoneurons in the ALS-vulnerable motor cell groups, which lack parvalbumin (20). r 1996
NeuroMolecular Medicine, 2003
Glutamate transporter proteins appear crucial to controlling levels of glutamate in the central nervous system (CNS). Abnormal and/or decreased levels of various transporters have been observed in amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) and in other neurological disorders. We have assessed glutamate transporter (GLT-1/EAAT2) levels in mice fed washed cycad flour containing a suspected neurotoxin that induces features resembling the Guamanian disorder, ALS-PDC. Down-regulation of glutamate transporter subtypes was detected by immunohistology using antibodies specific for two glial glutamate transporter splice variants (GLT-1α and GLT-1B). Immunohistology showed a "patchy" loss of antibody label with the patches centered on blood vessels. Computer densitometry showed significantly decreased GLT-1α levels in the spinal cord and primary somatosensory cortex of cycad-fed mice. GLT-1B levels were significantly decreased in the spinal cord, in the motor, somatosensory, and piriform cortices, and in the striatum. Western blots showed a 40% decrease in frontal motor cortex and lumbar spinal cord of cycad-fed mice that appeared to be phosphorylationdependent. Receptor-binding assays showed decreased NMDA and AMPA receptor levels and increased GABA A receptor levels in cycad-fed mice cortex. These receptor data are consistent with an increased level of extracellular glutamate. The generalized decrease in GLT-1, decreased excitatory amino acid receptor levels, and increased GABA A receptor levels may reflect an early glutamate-mediated excitotoxicity following cycad exposure. Deciphering the series of events leading to neurodegeneration in cycad-fed animals may provide clues leading to therapeutic approaches to halt the early stages of disease progression.
GLT-1 glutamate transporter levels are unchanged in mice expressing G93A human mutant SOD1
2002
A decrease in expression of the glutamate transporter GLT-1 is thought to be responsible for the increase in extracellular glutamate observed in patients with amyotrophic lateral sclerosis (ALS) and in a transgenic mouse model of ALS. We examined protein levels of the glutamate transporters GLT-1, GLAST and EAAC1 in the G93A (SOD1) transgenic mouse model of ALS. GLT-1 was detected in two bands (72 and 150 kD). Semi-quantitative analysis of Western blots showed that GLT-1 levels in sensorimotor cortex, brain stem, and cervical and lumbar spinal cord of G93A mice did not differ significantly from controls, either at end stage or at 60-or 90-days old. Nevertheless, other differences were found in GLT-1 at end stage. The percentage of total GLT-1 in the 150 kD band increased significantly ( p < 0.05) in the spinal cord and was elevated in the brain stem and cortex. Furthermore, brain stem and spinal cord GLT-1 from G93A mice showed retarded mobility on gels compared to controls (M r % 77.3 ± 2.3 and 164.3 ± 3.1 vs. 72.2 ± 2.4 and 153.6 ± 4.7, respectively). GLAST and EAAC1 were unchanged in both amount and mobility. These results show that a loss of GLT-1 protein is not necessary for ALS-like neurodegeneration in G93A mice. However, the changes in GLT-1 mobility and distribution indicate that GLT-1 is altered in mice with the SOD1 mutation. D : S 0 0 2 2 -5 1 0 X ( 0 1 ) 0 0 6 5 6 -6
Journal of cellular physiology, 2011
Glutamate is an essential excitatory neurotransmitter regulating brain functions. Excitatory amino acid transporter (EAAT)-2 is one of the major glutamate transporters expressed predominantly in astroglial cells and is responsible for 90% of total glutamate uptake. Glutamate transporters tightly regulate glutamate concentration in the synaptic cleft. Dysfunction of EAAT2 and accumulation of excessive extracellular glutamate has been implicated in the development of several neurodegenerative diseases including Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Analysis of the 2.5 kb human EAAT2 promoter showed that NF-kB is an important regulator of EAAT2 expression in astrocytes. Screening of approximately 1,040 FDA-approved compounds and nutritionals led to the discovery that many b-lactam antibiotics are transcriptional activators of EAAT2 resulting in increased EAAT2 protein levels. Treatment of animals with ceftriaxone (CEF), a b-lactam antibiotic, led to an increase of EAAT2 expression and glutamate transport activity in the brain. CEF has neuroprotective effects in both in vitro and in vivo models based on its ability to inhibit neuronal cell death by preventing glutamate excitotoxicity. CEF increases EAAT2 transcription in primary human fetal astrocytes through the NF-kB signaling pathway. The NF-kB binding site at À272 position was critical in CEF-mediated EAAT2 protein induction. These studies emphasize the importance of transcriptional regulation in controlling glutamate levels in the brain. They also emphasize the potential utility of the EAAT2 promoter for developing both low and high throughput screening assays to identify novel small molecule regulators of glutamate transport with potential to ameliorate pathological changes occurring during and causing neurodegeneration.
Experimental Neurology, 2006
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition resulting from progressive and selective loss of motor neurons, particularly those in the spinal cord. Despite much research, there is no single unifying consensus on the key events which underlie motor neuron cell death, and numerous mechanisms have been implicated that include enhanced oxidative stress and free radical production, abnormalities in axonal transport, protein aggregation, mitochondrial dysfunction and glutamate-mediated excitotoxicity. Excitotoxicity caused by glutamate, an endogenous neurotransmitter, is a long-standing concept and may be one of the major underlying causes of motor neuron loss in ALS. Briefly stated, glutamate excitotoxicity is a loss of control of normal glutamate transmission resulting in a calcium-mediated cell death through over activation of calcium-permeable glutamate receptors .
Neurotoxicity and ALS: Insights into Pathogenesis
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder of the motor neurons in the spinal cord, brainstem, and motor cortex. While the mechanisms underlying the development of ALS remain to be fully elucidated, evidence is now emerging to suggest that the pathophysiological mechanisms underlying ALS are multifactorial, reflecting a complex interaction between causal genes and local environment. In particular, dysfunction of metabolic pathways including excessive oxidative stress, glutamate excitotoxicity, mitochondrial dysfunction, and defective axonal transport
Specific electron transport chain abnormalities in amyotrophic lateral sclerosis
Journal of Neurology, 2009
In an amyotrophic lateral sclerosis (ALS) patient who also had an IgA gammopathy, autopsy studies identified the IgA in the surviving motor neurons. Further, the IgA bound the surface of isolated bovine motor neurons and inhibited neuronal proliferation in culture. To determine the pathologic basis of this IgA interaction with motor neurons, a neuroblastoma cDNA library was generated and screened with the IgA monoclonal antibody. Reactive clones were identified as flavin adenine dinucleotide (FAD) synthetase. To extend this finding to ALS in general, quantitative RT-PCRs were performed on blood samples from 26 ALS and 30 control blood samples to determine mRNA expression levels of FAD synthetase and other electron transport chain proteins, specifically riboflavin kinase (RFK), cytochrome C1 (CYC1), and succinate dehydrogenase complex subunit B (SDHB). All expression levels were measured against a control enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Expression levels for a non-respiratory chain protein (betaactin) were also measured. We found that FAD synthetase expression levels were decreased in ALS samples compared to expression levels in controls (P = 0.0151). Expression levels for RFK, CYC1, and SDHB were also significantly decreased in the ALS group (P = 0.0025, P = 0.0002, and P \ 0.0001, respectively). As control, expression levels for beta-actin did not show a significant difference between ALS and control groups (P = 0.2118). Our data show that a reduction in electron transport proteins, namely FAD synthetase, RFK, CYC1, and SDHB, is seen in patients with ALS. It is possible that this may have an effect on oxygen-dependent metabolic pathways. Human motor neurons may be particularly susceptible to injury if there is sub-optimal oxidative metabolism.
Glutamate transporters: the regulatory proteins for excitatory/excitotoxic glutamate in brain
Journal of Translational Science, 2016
Excitatory aminoacids (EAAs) are stored in glutamatergic neurons and related into synaptic cleft, where they can activate inotropic or metabotropic receptors. Their action ends due to transport mechanisms performed by EAAT transporters (EAAT1/GLAST, EAAT2/GLT1, EAAT3/EAAC1, and EAAT4 or EAAT5). Glutamate neurotoxicity has been described in several neurodegenerative diseases such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD) and amyotropic lateral sclerosis ALS). Some drugs, such as paclitaxel, are able to increase translation of microRNA and could be possible used as regulatory against glutamate neurotoxicity.
ELECTROPHORESIS, 2007
Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative disorder characterized by the selective loss of motor neurons from the spinal cord and brain. About 10% of ALS cases are familial (FALS), and in 20% of these cases the disease has been linked to mutations in the Cu,Zn-SOD1 gene. Although the molecular mechanisms causing these forms of ALS are still unclear, evidence has been provided that motor neurons injuries associated with mutant superoxide dismutase (SOD1)-related FALS result from a toxic gain-in-fuction of the mutated enzyme. To understand better the role of these mutations in the pathophysiology of FALS we have compared the pattern of proteins expressed in human neuroblastoma SH-SY5Y cell line with those of cell lines transfected with plasmids expressing the wild-type human SOD1 and the H46R and G93A mutants. 2-DE coupled to MALDI-TOF-MS were the proteomic tools used for identification of differentially expressed proteins. These included cytoskeletal proteins, proteins that regulate energetic metabolism and intracellular redox conditions, and the ubiquitin proteasome system. The proteomic approach allowed to expand the knowledge on the pattern of proteins, with altered expression, which we should focus on, for a better understanding of the possible mechanism involved in mutated-SOD1 toxicity. The cellular models considered in this work have also evidenced biochemical characteristics common to other SOD1-mutated cellular lines connected to the pathogenesis of ALS.
Journal of the …, 2007
Our earlier studies have shown that cerebrospinal fluid (CSF) of amyotrophic lateral sclerosis (ALS) patients causes death of motor neurons, both in in-vitro as well as in-vivo. There was an aberrant phosphorylation of neurofilaments in cultured spinal cord neurons of chick and rats following exposure to CSF of ALS patients (ALS-CSF). Other features of neurodegeneration, such as swollen neuronal soma and beading of neurites were also observed. In neonatal rat pups exposed to ALS-CSF, we observed phosphorylated neurofilaments in the soma of spinal motor neurons in addition to the increased lactate dehydrogenase activity and reactive astrogliosis. The present study examines the effect of ALS-CSF on the expression of glial glutamate transporter (GLT-1) in embryonic rat spinal cord cultures as well as in spinal astrocytes of neonatal rats. Immunostaining suggested a decrease in the expression of GLT-1 by astrocytes both in culture and in-vivo following exposure to ALS-CSF. Quantification of Western blots confirmed the decreased expression of GLT-1. Our results provide evidence that toxic factor(s) present in ALS-CSF depletes GLT-1 expression. This could lead to an increased level of glutamate in the synaptic pool causing excitotoxicity to motor neurons, possibly by triggering the 'glutamate-mediated toxicity-pathway'.
The crucial role of caspase-9 in the disease progression of a transgenic ALS mouse model
The EMBO Journal, 2003
Mutant copper/zinc superoxide dismutase (SOD1)overexpressing transgenic mice, a mouse model for familial amyotrophic lateral sclerosis (ALS), provides an excellent resource for developing novel therapies for ALS. Several observations suggest that mitochondria-dependent apoptotic signaling, including caspase-9 activation, may play an important role in mutant SOD1-related neurodegeneration. To elucidate the role of caspase-9 in ALS, we examined the effects of an inhibitor of X chromosome-linked inhibitor of apoptosis (XIAP), a mammalian inhibitor of caspase-3, -7 and -9, and p35, a baculoviral broad caspase inhibitor that does not inhibit caspase-9. When expressed in spinal motor neurons of mutant SOD1 mice using transgenic techniques, XIAP attenuated disease progression without delaying onset. In contrast, p35 delayed onset without slowing disease progression. Moreover, caspase-9 was activated in spinal motor neurons of human ALS subjects. These data strongly suggest that caspase-9 plays a crucial role in disease progression of ALS and constitutes a promising therapeutic target.
Cerebral Cortex, 2015
Amyotrophic lateral sclerosis (ALS) is a lethal disorder characterized by the gradual degeneration of motor neurons in the cerebrospinal axis. Whether upper motor neuron hyperexcitability, which is a feature of ALS, provokes dysfunction of glutamate metabolism and degeneration of lower motor neurons via an anterograde process is undetermined. To examine whether early changes in upper motor neuron activity occur in association with glutamatergic alterations, we performed whole-cell patchclamp recordings to analyze excitatory properties of Layer V cortical motor neurons and excitatory postsynaptic currents (EPSCs) in presymptomatic G93A mice modeling familial ALS (fALS). We found that G93A Layer V pyramidal neurons exhibited altered EPSC frequency and rheobase values indicative of their hyperexcitability status. Biocytin loading of these hyperexcitable neurons revealed an expansion of their basal dendrite arborization. Moreover, we detected increased expression levels of the vesicular glutamate transporter 2 in cortical Layer V of G93A mice. Altogether our data show that functional and structural neuronal alterations associate with abnormal glutamatergic activity in motor cortex of presymptomatic G93A mice. These abnormalities, expected to enhance glutamate release and to favor its accumulation in the motor cortex, provide strong support for the view that upper motor neurons are involved early on in the pathogenesis of ALS.
Journal of Neurochemistry, 2006
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a selective loss of motor neurones accompanied by intense gliosis in lesioned areas of the brain and spinal cord. Glutamate-mediated excitotoxicity resulting from impaired astroglial uptake constitutes one of the current pathophysiological hypotheses explaining the progression of the disease. In this study, we examined the regulation of glutamate transporters by type 5 metabotropic glutamate receptor (mGluR5) in activated astrocytes derived from transgenic rats carrying an ALS-related mutated human superoxide dismutase 1 (hSOD1 G93A ) transgene. Cells from transgenic animals and wild-type littermates showed similar expression of glutamate-aspartate transporter and glutamate transporter 1 (GLT-1) after in vitro activation, whereas cells carrying the hSOD1 mutation showed a three-fold higher expression of functional mGluR5, as observed in the spinal cord of end-stage animals. In cells from wild-type animals, (S)-3,5-dihydroxyphenylglycine (DHPG) caused an immediate protein kinase C (PKC)-dependent up-regulation of aspartate uptake that reflected the activation of GLT-1. Although this effect was mimicked in both cultures by direct activation of PKC using phorbol myristate acetate, DHPG failed to up-regulate aspartate uptake in cells derived from the transgenic rats. The failure of activated mGluR5 to increase glutamate uptake in astrocytes derived from this animal model of ALS supports the theory of glutamate excitotoxicity in the pathogenesis of the disease.