Charge Transport in Weyl Semimetals (original) (raw)

We study transport in three dimensional Weyl semimetals with N isotropic Weyl nodes in the presence of Coulomb interactions or disorder at temperature T . In the interacting clean limit, we determine the conductivity by solving a quantum Boltzmann equation within a 'leading log' approximation and find it to be proportional to T , upto logarithmic factors arising from the flow of couplings. In the noninteracting disordered case, we compute the finite-frequency Kubo conductivity and show that it exhibits distinct behaviors for ω ≪ T and ω ≫ T : in the former regime we recover the results of a previous analysis, of a finite conductivity and a Drude width that vanishes as N T 2 ; in the latter, we find a conductivity that vanishes linearly with ω whose leading contribution as T → 0 is the same as that of the clean, non-interacting system σ(ω, T = 0) = N e 2 12h |ω| v F . We compare our results to experimental data on Y2Ir2O7 and also comment on the possible relevance to recent transport data on Eu2Ir2O7.