ESI Dalton Trans., 2015, 44, 13473-13479 (original) (raw)

Russ. Chem. Bull., Int. Ed. 2004, 53, №8, 1711-1716

5 Methyl 4,5 dihydro 3H spiro[benzo 2 azepine 3,1´ cyclohexane] N oxide was rear ranged into 5 methyl 1 oxo 1,2,4,5 tetrahydro 3H spiro[benzo 2 azepine 3,1´ cyclohexane]. The latter was used for the synthesis of spiro{triazolo[3,4 a] and tetrazolo[5,1 a]benzo 2 azepinecyclohexanes}. Key words: spiro[benzo 2 azepinecyclohexanes], spiro{azolo[5,1 a]benzo 2 azepine cyclohexanes}, rearrangements, cyclic nitrones, fused triazoles, fused tetrazoles. 1.36 (d, 7.24-7.67 0.80-1.65 5.95 (br.s, NH) J = 11.6, J = 5.8, J = 7.0, J = 5.8, J = 7.0) J = 13.7) J = 13.7) J = 11.6) 3 1.73 (dd, 2.12 (dd, 2.97 (qdd, 1.37 (d, 7.18-7.88 0.70-1.80 8.23 (br.s, NH) J = 11.9, J = 5.8, J = 6.7, J = 5.8, J = 6.7) J = 13.7) J = 13.7) J = 11.9) 4 1.64 (m) 2.22 (m) 3.81 (m) 1.38 (d, 7.20-7.70 0.85-1.95 -J = 6.8) 5 1.74 (dd, 2.15 (dd, 2.93 (qdd, 1.27 (d, 7.15-7.40 0.65-2.00 2.45 (s, MeS) J = 11.9, J = 5.5, J = 6.7, J = 5.5, J = 6.7) J = 13.7) J = 13.7) J = 11.9) 6 2.12 (dd, 2.28 (dd, 3.11 (qdd, 1.40 (d, 7.25-7.60; 0.80-1.80 -J = 11.3, J = 5.5, J = 7.0, J = 5.5, J = 7.0) 7.95 (1 H) J = 14.0) J = 14.0) J = 11.3) 7 1.80 (dd, 2.19 (dd, 3.10 (qdd, 1.39 (d, 7.35-7.65 1.10-1.80 7.96 (BB´, J = 11.9, J = 5.5, J = 6.7, J = 5.5, J = 6.7) 3 pyridyl); J = 13.7) J = 13.7) J = 11.9) 8.66 (AA´, 2 pyridyl) 8 2.15 (dd, 2.35 (dd, 3.10 (qdd, 1.42 (d, 7.25-7.60; 0.50-1.80 7.90 (BB´, J = 11.3, J = 5.4, J = 7.0, J = 5.4, J = 7.0) 8.10 (1 H) 3 pyridyl); J = 14.2) J = 14.2) J = 11.3) 8.63 (AA´, 2 pyridyl) 9 1.86 (dd, 2.15 (dd, 3.38 (qdd, 1.39 (d, 7.23-7.64 1.00-1.80 3.96 (s, MeO) J = 11.6, J = 5.5, J = 6.7, J = 5.5, J = 6.7) J = 13.7) J = 13.7) J = 11.6) 10 1.98 (dd, 2.53 (dd, 2.96 (qdd, 1.44 (d, 7.30-7.55; 1.80-2.20; 2.28 (s, MeCO) J = 9.

Russ. Chem. Bull., Int. Ed. 2015, 64, 112-126

Selective catalytic (10% Pd/C) hydrogenation of the double bond in the oxabicyclo [2.2.1]heptene fragment of substituted fused 1 oxo 3a,6 epoxyisoindoles is described. A con tinuous flow hydrogenation device that incorporates in situ hydrogen generation by electrolysis of water was used. Changing the hydrogen source from water to deuterium oxide provides possibility to synthesize deuterated oxoepoxyisoindolones. Hydrogenation is stereoselective to give exclusively exo cis deuterated derivatives. , (J = (J = (both d, 1 Н each, J = 12.0); 1.72 J = 3.4, 7.36 (t, 2 Н, J = 7.6); J = 7.6); 1.98 (dq, 11.4) 11.4) J = 5.8) (dd, J = 8.9, J = 8.9) 7.63 (d, 2 Н, J = 7.6) СH 2 СН 3 , J = 2.0, J = 12.0) J = 7.6) 2d

CC and CN Coupling of Nitriles Mediated by B(C 6 F 5 ) 3 and Cp 2 ZrPh 2

Organometallics, 2007

Table 1. Crystal data and structure refinement for 1. Empirical formula C36 H34 N2 Zr2 Formula weight 677.09 Temperature 180(2) K Wavelength 0.71073 A Crystal system, space group Monoclinic, P 1 21/c 1 Unit cell dimensions a = 8.4275(4) A alpha = 90 deg. b = 17.1273(8) A beta = 100.015(4) deg. c = 9.8083(5) A gamma = 90 deg. Volume 1394.16(12) A^3 Z, Calculated density 2, 1.613 Mg/m^3 Absorption coefficient 0.777 mm^-1 F(000) 688 Crystal size 0.5 x 0.3 x 0.2 mm Theta range for data collection 3.41 to 26.31 deg. Limiting indices-10<=h<=9,-21<=k<=21,-12<=l<=12 Reflections collected / unique 9958 / 2847 [R(int) = 0.0222] Completeness to theta = 26.31 99.8 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.8507 and 0.6887 Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 2847 / 0 / 182 Goodness-of-fit on F^2 1.076 Final R indices [I>2sigma(I)] R1 = 0.0221, wR2 = 0.0552 R indices (all data) R1 = 0.0257, wR2 = 0.0564 Largest diff. peak and hole 0.435 and-0.431 e.A^-3 C(12)-C(11)-Zr(1) 75.26(11) C(10)-C(11)-Zr(1) 73.25(10) C(13)-C(12)-C(11) 108.41(17) C(13)-C(12)-Zr(1) 73.48(11) C(11)-C(12)-Zr(1) 72.94(11) C(12)-C(13)-C(9) 107.81(17) C(12)-C(13)-Zr(1) 74.81(11) C(9)-C(13)-Zr(1) 73.49(10) C(18)-C(14)-C(15) 108.17(19) C(18)-C(14)-Zr(1) 74.53(11) C(15)-C(14)-Zr(1) 74.00(12) C(16)-C(15)-C(14) 107.58(18) C(16)-C(15)-Zr(1) 75.00(11) C(14)-C(15)-Zr(1) 73.83(11) C(17)-C(16)-C(15) 108.39(19) C(17)-C(16)-Zr(1) 73.64(11) C(15)-C(16)-Zr(1) 73.04(11) C(16)-C(17)-C(18) 107.78(18) C(16)-C(17)-Zr(1) 74.54(11) C(18)-C(17)-Zr(1) 73.94(11) C(14)-C(18)-C(17) 108.06(19) C(14)-C(18)-Zr(1) 73.46(11) C(17)-C(18)-Zr(1) 74.10(11) _____________________________________________________________ Symmetry transformations used to generate equivalent atoms: #1-x+1,-y,-z+1