Soluble linear groups (original) (raw)
Abstract
The least upper bound for the nilpotent lengths of soluble linear groups of degree n is calculated. For each n it is k + 2r where r(n) = [log_(2«-l)A] and [x] is the integral part of
Figures (1)
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (6)
- John D. Dixon, "The solvable length of a solvable linear group", Math. Z. 107 (1968), 151-158.
- B. Huppert, Endliahe Gruppen I (Die Grundlehren der mathematischen Wissenschaften, Band 134. Springer-Verlag, Berlin, Heidelberg, New York, 1967).
- A.R. Makan, "On some aspects of finite soluble groups", (Ph.D. thesis, Australian National University, Canberra, 1971).
- A.I. Mal'cev, "On certain classes of infinite solvable groups", Amer. Math. Soc. Tranel. (2) 2 (1956), 1-21.
- M.F. Newman, "The soluble length of soluble linear groups", Submitted to Math. Z.
- D. [A.] Suprunenko, Soluble and nilpotent linear groups (Transl. Math. Monographs, 9. Amer. Math. S o c , Providence, Rhode Island, 1963).