Soluble linear groups (original) (raw)

Abstract

The least upper bound for the nilpotent lengths of soluble linear groups of degree n is calculated. For each n it is k + 2r where r(n) = [log_(2«-l)A] and [x] is the integral part of

Figures (1)

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (6)

  1. John D. Dixon, "The solvable length of a solvable linear group", Math. Z. 107 (1968), 151-158.
  2. B. Huppert, Endliahe Gruppen I (Die Grundlehren der mathematischen Wissenschaften, Band 134. Springer-Verlag, Berlin, Heidelberg, New York, 1967).
  3. A.R. Makan, "On some aspects of finite soluble groups", (Ph.D. thesis, Australian National University, Canberra, 1971).
  4. A.I. Mal'cev, "On certain classes of infinite solvable groups", Amer. Math. Soc. Tranel. (2) 2 (1956), 1-21.
  5. M.F. Newman, "The soluble length of soluble linear groups", Submitted to Math. Z.
  6. D. [A.] Suprunenko, Soluble and nilpotent linear groups (Transl. Math. Monographs, 9. Amer. Math. S o c , Providence, Rhode Island, 1963).