Continuous exposure to glial cell line-derived neurotrophic factor to mature dopaminergic transplants impairs the graft’s ability to improve spontaneous motor behavior in parkinsonian rats (original) (raw)
Related papers
Glial cell line-derived neurotrophic factor (GDNF) has been shown to increase the survival of dopamine neu-rons in a variety of in vitro and in vivo model systems. Therefore, it constitutes an important therapeutic protein with the potential to ameliorate dopamine neuronal de-generation in Parkinson's disease or to support dopa-mine neuronal replacement strategies. However, bio-physical and practical considerations present obstacles for the direct delivery of the GDNF protein to CNS neu-rons. Here we show that rodent neural precursor cells isolated and expanded in culture as neurospheres (NS) can be genetically modified to express green fluorescent protein (GFP) or to release GDNF using lentiviral constructs. GDNF-NS increased the fibre outgrowth of primary embryonic dopamine neurons in cocultures, showing that the protein was released in biologically significant quantities. Furthermore, after transplantation into the 6-hydroxydopamine-lesioned rat striatum, GDNF-NS significantly increased the survival of cografted primary dopamine neurons. However, this was not reflected in behavioural recovery in these animals. We found that, by 6 weeks, few cells expressed GDNF or GFP, suggesting either that transgene expression was down-regulated over time or that the cells died. This may explain the initial effects on dopamine neuronal survival within the graft but the lack of long-term effect on subsequent fibre outgrowth and behaviour. Providing sustained levels of neural precursor-mediated transgene expression can be achieved following transplantation in the future; this approach may prove beneficial as an alternative therapeutic strategy in the cell-based management of Parkinson's disease.
Journal of Neurosurgery, 1998
Object. The goal of this study was to investigate the ability of fetal dopaminergic neurons to improve complex sensorimotor behavior. Methods. The authors obtained ventral mesencephalic tissue from 14-day-old rat fetuses. The cells were exposed to glial cell line—derived neurotrophic factor (GDNF) prior to transplantation into rats with unilateral 6-hydroxydopamine lesions of the dopaminergic nigrostriatal pathway. Animals that received 400,000 cells exposed to GDNF demonstrated significant improvement in contralateral forelimb function and showed improvement in rotational behavior faster than animals that received cells not exposed to GDNF. Increasing the number of implanted cells to 800,000 exposed to GDNF did not result in any additional improvement in functional recovery. Conclusions. As neural grafting procedures in the nervous system evolve and genetically engineered cells or stem cells replace fetal tissue, crucial questions about cell number and trophic regulation will need ...
Cell transplantation
The transplantation of fetal mesencephalic cell suspensions into the brain striatal system is an emerging treatment for Parkinson's disease. However, one objection to this procedure is the relatively poor survival of implanted cells. The ability of neurotrophic factors to regulate developmental neuron survival and differentiation suggests they could be used to enhance the success of cerebral grafts. We studied the effects of neurotrophin-3 (NT-3) or glial cell line-derived neurotrophic factor (GDNF) on the survival of dopaminergic neurons from rat fetal ventral mesencephalic cells (FMCs) implanted into the rat striatum. Two conditions were tested: (a) incubation of FMCs in media containing NT-3 and GDNF, prior to grafting, and (b) co-grafting of FMCs with cells engineered to overexpress high levels of NT-3 or GDNF. One week after grafting into the rat striatum, the survival of TH+ neurons was significantly increased by pretreatment of ventral mesencephalic cells with NT-3 or GDN...
2021
Parkinson’s disease (PD) is characterized by the progressive loss of midbrain dopaminergic neurons (DaNs) of the substantia nigra pars compacta and the decrease of dopamine in the brain. Grafting DaN differentiated from embryonic stem cells (ESCs) has been proposed as an alternative therapy for current pharmacological treatments. Intrastriatal grafting of such DaNs differentiated from mouse or human ESCs improves motor performance, restores DA release, and suppresses dopamine receptor super-sensitivity. However, a low percentage of grafted neurons survive in the brain. Glial cell line-derived neurotrophic factor (GDNF) is a strong survival factor for DaNs. GDNF has proved to be neurotrophic for DaNs in vitro and in vivo, and induces axonal sprouting and maturation. Here, we engineered mouse ESCs to constitutively produce human GDNF, to analyze DaN differentiation and the possible neuroprotection by transgenic GDNF after toxic challenges in vitro, or after grafting differentiated DaN...
Journal of Neurochemistry, 2002
Abstract: Neurturin (NTN) and glial cell line-derived neurotrophic factor (GDNF), two members of the GDNF family of growth factors, exert very similar biological activities in different systems, including the substantia nigra. Our goal in the present work was to compare their function and define whether nonoverlapping biological activities on midbrain dopaminergic neurons exist. We first found that NTN and GDNF are differentially regulated during postnatal development. NTN mRNA progressively decreased in the ventral mesencephalon and progressively increased in the striatum, coincident with a decrease in GDNF mRNA expression. This finding suggested distinct physiological roles for each factor in the nigrostriatal system. We therefore examined their function in ventral mesencephalon cultures and found that NTN promoted survival comparable with GDNF, but only GDNF induced sprouting and hypertrophy of developing dopaminergic neurons. We subsequently examined the ability of NTN to prevent the 6-hydroxydopamine-induced degeneration of adult dopaminergic neurons in vivo. Fibroblasts genetically engineered to deliver high levels of GDNF or NTN were grafted supranigrally. NTN was found to be as potent as GDNF at preventing the death of nigral dopaminergic neurons, but only GDNF induced tyrosine hydroxylase staining, sprouting, or hypertrophy of dopaminergic neurons. In conclusion, our results show selective survival-promoting effects of NTN over wider survival, neuritogenic, and hypertrophic effects of GDNF on dopaminergic neurons in vitro and in vivo. Such differences are likely to underlie unique roles for each factor in postnatal development and may ultimately be exploited in the treatment of Parkinson’s disease.
2013
We have developed a novel Schwann cell line, SCTM41, derived from postnatal sciatic nerve cultures and have stably transfected a clone with a rat glial cell line-derived neurotrophic factor (GDNF) construct. Coculture with this GDNF-secreting clone enhances in vitro survival and fiber growth of embryonic dopaminergic neurons. In the rat unilateral 6-OHDA lesion model of Parkinson’s disease, we have therefore made cografts of these cells with embryonic day 14 ventral mesencephalic grafts and assayed for effects on dopaminergic cell survival and process outgrowth. We show that cografts of GDNF-secreting Schwann cell lines improve the survival of intrastriatal embryonic dopaminergic neuronal grafts and improve neurite outgrowth into the host neuropil but have no additional effect on amphetamine-induced rotation. We next looked to see whether bridge grafts of GDNF-secreting SCTM41 cells would promote
International Journal of Developmental Neuroscience, 2003
Among trophic factors already known, glial cell line-derived neurotrophic factor (GDNF) and other members of its family have potent and specific action on dopaminergic neurons. In the present investigation an attempt has been made to validate the role of GDNF co-transplantation with fetal ventral mesencephalic cells (VMC) on functional viability and restoration using neurobehavioral, neurochemical and immunohistochemical parameters at 6 weeks post-transplantation in 6-hydroxydopamine (6-OHDA) lesioned rat model of Parkinson's disease (PD). A significant restoration (P < 0.01) in d-amphetamine induced rotations, spontaneous and apomorphine induced locomotor activity in rats co-transplanted with VMC and GDNF was observed as compared to VMC alone transplanted rats. Level of dopamine (DA), 3,4-dihydroxy-phenyl acetic acid (DOPAC) and dopamine D2 (DA-D2) receptors in the caudate putamen (CPu) were significantly (P < 0.001) restored in co-transplanted group as compared to VMC transplanted or GDNF administered animals. The functional viability of transplanted VMC was confirmed by tyrosine hydroxylase (TH) expression and quantification of TH-positive cells by image analysis revealed a significant restoration in TH-IR fibers density as well as TH-IR neurons counts in co-transplanted animals over VMC transplanted animals. Results suggest that co-transplantation of VMC and GDNF may be a better approach towards functional restoration in 6-OHDA lesioned rat model of Parkinson's disease.
Experimental Neurology, 2002
The effects of sustained (up to 9 months) striatal overexpression of glial cell line derived neurotrophic factor (GDNF) on lesioned nigrostriatal dopamine (DA) neurons was studied using a recombinant lentiviral (rLV) vector to deliver GDNF into the striatum 4 weeks prior to the creation of an intrastriatal 6-hydroxydopamine lesion. The results of the amphetamine-induced rotation suggested an initial partial protection followed by a complete recovery, whereas the spontaneous motor behaviors remained impaired. There was a clear protection of the nigral tyrosine hydroxylase (TH)-positive neurons in the rLV-GDNF group compared to rats injected with the control vector encoding green fluorescent protein (GFP) (70 and 20% of the intact side, respectively). However, the striatal TH؉ fiber density was equally reduced (to 20% of the intact side) in both groups. Further morphological analyses indicated that the nigrostriatal projections of the DA neurons were indeed preserved in the GDNF group. The axonal projections were visualized using two independent methods: First, retrograde labeling of the nigral cell bodies by intrastriatal Fluoro-Gold injections showed that the majority of rescued cells in the GDNF group had preserved axonal projections to striatum. Second, injections of a recombinant adenoassociated viral vector expressing GFP into the nigra was used to anterogradely fill the DA neurons and their projections with GFP protein. GFP immunostaining clearly demonstrated that the fibers of the nigral DA cells were preserved along the nigrostriatal pathway and innervated large parts of the striatum, but did not express TH at detectable levels. In addition, fiber sprouting was observed in the globus pallidus, entopeduncular nucleus, and substantia nigra, corresponding to areas where GDNF protein was released. The lack of functional recovery in the spontaneous motor behaviors may, at least in part, be ex-plained by this extensive aberrant fiber sprouting in the downstream striatal target nuclei and/or decreased synthesis of dopamine in the striatum. © 2002 Elsevier Science (USA)