Generalized Kahler geometry and manifest N=(2,2) supersymmetric nonlinear sigma-models (original) (raw)
Generalized complex geometry is a new mathematical framework that is useful for describing the target space of N = (2, 2) nonlinear sigma-models. The most direct relation is obtained at the N = (1, 1) level when the sigma model is formulated with an additional auxiliary spinorial field. We revive a formulation in terms of N = (2, 2) semi-(anti)chiral multiplets where such auxiliary fields are naturally present. The underlying generalized complex structures are shown to commute (unlike the corresponding ordinary complex structures) and describe a Generalized Kähler geometry. The metric, B-field and generalized complex structures are all determined in terms of a potential K.