Characterization of the sat Operon in Streptococcus mutans: Evidence for a Role of Ffh in Acid Tolerance (original) (raw)
Related papers
Microbiology, 1999
The ability of Streptococcus mutans, a bacterial pathogen associated with dental caries, t o tolerate rapid drops in plaque pH (acidurance), is considered an important virulence factor. To study this trait, Tn917 mutants of 5. mutans strain JH1005 which display acid sensitivity have been isolated and partially characterized. In this paper, the characterization of one of these mutants, AS1 7, is reported. Preliminary sequence analysis revealed that the transposon insertion in AS17 occurred in the intergenic region of a two-gene locus which has been named sat for secretion and acid tolerance. This locus displays a high degree of homology t o the y/xM-ffh operon of Bacillus subtik The sat+ locus was cloned by complementation of a conditional Escherichia coli ffh mutant with an 5. mutans genomic library. Sequencing of the complementing clone identified the intact yIxM and #%i genes as well as a partial ORF with homology t o the proU/opuAC gene of B. subtilis which encodes the binding protein of the ProU/OpuA osmoregulated glycine betaine transport system. RNA dot blot experiments indicated steady-state levels of ffh mRNA in the mutant that were approximately eightfold lower compared to parental levels. This suggests a partial polar effect of the sat=l::Tn917 mutation on ffh expression. Upon acid shock (pH 5)# wild-type ffh mRNA levels were found t o increase approximately fourto eightfold compared to unstressed (pH 7.5) levels. Mutant levels remained unaltered under the same conditions. Experiments designed to investigate the origins of the acid-sensitivity of the mutant revealed a lack of an acid-adaptiveholerance response. Assays of proton-extruding ATPase (H+/ATPase) specific activity measured with purified membranes derived from acidAshocked AS17 showed twofold lower levels compared to the parent strain. Also, AS17 was found to be unable t o ferment sorbitol although it was able t o grow in glucose and a variety of other sugar substrates. These findings suggest that Ffh may be involved in the maintenance of a functional membrane protein composition during adaptation of S. mutans t o changing environmental conditions.
Microbiology, 2009
Streptococcus mutans in dental biofilms is regularly exposed to cycles of acidic pH during the ingestion of fermentable dietary carbohydrates. The ability of S. mutans to tolerate low pH is crucial for its virulence and pathogenesis in dental caries. To better understand its acid tolerance mechanisms, we performed genome-wide transcriptional analysis of S. mutans in response to an acidic pH signal. The preliminary results showed that adaptation of S. mutans to pH 5.5 induced differential expression of nearly 14 % of the genes in the genome, including 169 upregulated genes and 108 downregulated genes, largely categorized into nine functional groups. One of the most interesting findings was that the genes encoding multiple two-component systems (TCSs), including CiaHR, LevSR, LiaSR, ScnKR, Hk/Rr1037/1038 and ComDE, were upregulated during acid adaptation. Real-time qRT-PCR confirmed the same trend in the expression profiles of these genes at pH 5.5. To determine the roles of these transduction systems in acid adaptation, mutants with a deletion of the histidine-kinase-encoding genes were constructed and assayed for the acid tolerance response (ATR). The results revealed that inactivation of each of these systems resulted in a mutant that was impaired in ATR, since pre-exposure of these mutants to pH 5.5 did not induce the same level of protection against lethal pH levels as the parent did. A competitive fitness assay showed that all the mutants were unable to compete with the parent strain for persistence in dual-strain mixed cultures at acidic pH, although, with the exception of the mutant in liaS, little effect was observed at neutral pH. The evidence from this study suggests that the multiple TCSs are required for S. mutans to orchestrate its signal transduction networks for optimal adaptation to acidic pH.
FEMS Microbiology Letters, 2004
Previously, we described in Streptococcus mutans strain NG8 a 5-gene operon (sat) that includes ffh, the bacterial homologue of the eukaryotic signal recognition particle (SRP) protein, SR54. A mutation in ffh resulted in acid sensitivity but not loss of viability. In the present study, chemostat-grown cells of the ffh mutant were shown to possess only 26% and 39% of the parental membrane F-ATPase activity and 55% and 75% of parental glucose-phosphotransferase (PTS) activity when pH-7 and pH-5-grown cells, respectively, were assayed. Two-dimensional-gel electrophoretic analyses revealed significant differences in protein profiles between parent and ffh-mutant strains at both pH 5 and pH 7. It appears that the loss of active SRP (Ffh) function, while not lethal, results in substantial alterations in cellular physiology that includes acid tolerance.
uvrA Is an Acid-Inducible Gene Involved in the Adaptive Response to Low pH in Streptococcus mutans
Journal of Bacteriology, 2001
The pH-inducible acid tolerance response (ATR) is believed to play a major role in acid adaptation and virulence of Streptococcus mutans . To study this phenomenon in S . mutans JH1005, differential display PCR was used to identify and clone 13 cDNA products that had increased expression in response to pH 5.0 compared to that of pH 7.5-grown cells. One of these products, confirmed to be pH inducible by RNA dot blot and reverse transcription-PCR analyses, had 67% identity to a uvrA -UV repair excinuclease gene in Bacillus subtilis . Further sequence analysis of the uvrA homologue using the S . mutans genome database revealed that the complete gene was encoded in an open reading frame (ORF) of 2,829 bp (944 amino acids; 104.67 kDa). Immediately 3′ of uvrA was an ORF encoding a putative aminopeptidase gene ( pepP ). uvrA knockouts were constructed in S . mutans strains JH1005, NG8, and UA159 using allelic-exchange mutagenesis, replacing the entire gene with an erythromycin resistance c...
Proteome analysis of Streptococcus mutans metabolic phenotype during acid tolerance
Microbiology, 2004
Two-dimensional gel electrophoretic analysis of the proteome of Streptococcus mutans grown at a steady state in a glucose-limited anaerobic continuous culture revealed a number of proteins that were differentially expressed when the growth pH was lowered from pH 7?0 to pH 5?0. Changes in the expression of metabolic proteins were generally limited to three biochemical pathways: glycolysis, alternative acid production and branched-chain amino acid biosynthesis. The relative level of expression of protein spots representing all of the enzymes associated with the Embden-Meyerhof-Parnas pathway, and all but one of the enzymes involved in the major alternative acid fermentation pathways of S. mutans, was identified and measured. Proteome data, in conjunction with end-product and cell-yield analyses, were consistent with a phenotypic change that allowed S. mutans to proliferate at low pH by expending energy to extrude excess H + from the cell, while minimizing the detrimental effects that result from the uncoupling of carbon flux from catabolism and the consequent imbalance in NADH and pyruvate production. The changes in enzyme levels were consistent with a reduction in the formation of the strongest acid, formic acid, which was a consequence of the diversion of pyruvate to both lactate and branched-chain amino acid production when S. mutans was cultivated in an acidic environment.
Stress-responsive proteins are upregulated in Streptococcus mutans during acid tolerance
Microbiology, 2004
Streptococcus mutansis an important pathogen in the initiation of dental caries as the bacterium remains metabolically active when the environment becomes acidic. The mechanisms underlying this ability to survive and proliferate at low pH remain an area of intense investigation. Differential two-dimensional electrophoretic proteome analysis ofS. mutansgrown at steady state in continuous culture at pH 7·0 or pH 5·0 enabled the resolution of 199 cellular and extracellular protein spots with altered levels of expression. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identified 167 of these protein spots. Sixty-one were associated with stress-responsive pathways involved in DNA replication, transcription, translation, protein folding and proteolysis. The 61 protein spots represented isoforms or cleavage products of 30 different proteins, of which 25 were either upregulated or uniquely expressed during acid-tolerant growth at pH 5·0. Among the unique and up...
BMC Microbiology, 2010
Background: One of the key virulence determinants of Streptococcus mutans, the primary etiological agent of human dental caries, is its strong acid tolerance. The acid tolerance response (ATR) of S. mutans comprises several mechanisms that are induced at low pH and allow the cells to quickly adapt to a lethal pH environment. Malolactic fermentation (MLF) converts L-malate to L-lactate and carbon dioxide and furthermore regenerates ATP, which is used to translocate protons across the membrane. Thus, MLF may contribute to the aciduricity of S. mutans but has not been associated with the ATR so far.
Defects in D-Alanyl-Lipoteichoic Acid Synthesis in Streptococcus mutans Results in Acid Sensitivity
Journal of Bacteriology, 2000
In the cariogenic organism, Streptococcus mutans, low pH induces an acid tolerance response (ATR). To identify acid-regulated proteins comprising the ATR, transposon mutagenesis with the thermosensitive plasmid pGh9:ISS1 was used to produce clones that were able to grow at neutral pH, but not in medium at pH 5.0. Sequence analysis of one mutant (IS1A) indicated that transposition had created a 6.3-kb deletion, one end of which was in dltB of the dlt operon encoding four proteins (DltA-DltD) involved in the synthesis of D-alanyllipoteichoic acid. Inactivation of the dltC gene, encoding the D-alanyl carrier protein (Dcp), resulted in the generation of the acid-sensitive mutant, BH97LC. Compared to the wild-type strain, LT11, the mutant exhibited a threefold-longer doubling time and a 33% lower growth yield. In addition, it was unable to initiate growth below pH 6.5 and unadapted cells were unable to survive a 3-h exposure in medium buffered at pH 3.5, while a pH of 3.0 was required to kill the wild type in the same time period. Also, induction of the ATR in
Journal of Bacteriology, 2009
Glutamate contributes to the acid tolerance response (ATR) of many Gram-negative and Gram-positive bacteria, but its role in the ATR of the oral bacterium Streptococcus mutans is unknown. This study describes the discovery and characterization of a glutamate transporter operon designated glnQHMP (Smu.1519 to Smu.1522) and investigates its potential role in acid tolerance. Deletion of glnQHMP resulted in a 95% reduction in transport of radiolabeled glutamate compared to the wild-type UA159 strain. The addition of glutamate to metabolizing UA159 cells resulted in an increased production of acidic end products, whereas the glnQHMP mutant produced less lactic acid than UA159, suggesting a link between glutamate metabolism and acid production and possible acid tolerance. To investigate this possibility, we conducted a microarray analysis with glutamate and under pH 5.5 and pH 7.5 conditions which showed that expression of the glnQHMP operon was downregulated by both glutamate and mild ac...
Journal of Bacteriology, 2003
Updated information and services can be found at: These include: REFERENCES http://jb.asm.org/content/185/8/2475#ref-list-1 at: This article cites 41 articles, 23 of which can be accessed free CONTENT ALERTS more» articles cite this article), Receive: RSS Feeds, eTOCs, free email alerts (when new http://journals.asm.org/site/misc/reprints.xhtml Information about commercial reprint orders: http://journals.asm.org/site/subscriptions/ To subscribe to to another ASM Journal go to: on September 15, 2014 by guest http://jb.asm.org/ Downloaded from on September 15, 2014 by guest