Anomalous optical phonons in FeTe chalcogenides: Spin state, magnetic order, and lattice anharmonicity (original) (raw)

Abstract

Polarized Raman-scattering spectra of non-superconducting, single-crystalline FeTe are investigated as function of temperature. We have found a relation between the magnitude of ordered magnetic moments and the linewidth of 1g A phonons at low temperatures. This relation is attributed to the intermediate spin state (S=1) and the orbital degeneracy of the Fe ions. Spin-phonon coupling constants have been estimated based on microscopic modeling using density-functional theory and analysis of the local spin density. Our observations show the importance of orbital degrees of freedom for the Fe-based superconductors with large ordered magnetic moments, while small magnetic moment of Fe ions in some iron pnictides reflects the low spin state of Fe ions in those systems.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (44)

  1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
  2. F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P. M. Wu, Y.-C. Lee, Y.-L.
  3. Huang, Y.-Y. Chu, D.-C. Yan, M.-K. Wu, Proc. Natl. Acad. Sci. U.S.A. 105, 14262 (2008).
  4. M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).
  5. J. H. Tapp, Z. Tang, B. Lv, K. Sasmal 2 , B. Lorenz, P. C. W. Chu, and A. M. Guloy, Phys. Rev. B 78, 060505(R) (2008).
  6. X. H. Chen, G. W. T. Wu, R. H. Liu, and D. F. Fang, Nature (London) 453, 761 (2008).
  7. Z. A. Ren, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, Chin. Phys. Lett. 25, 2215 (2008).
  8. H. Takahashi, Nature (London) 453, 376 (2008).
  9. M. S. Torikachvili, S. L. Bud'ko, N. Ni, and P. C. Canfield, Phys. Rev. Lett. 101, 057006 (2008).
  10. Y. Mizuguchi, F. Tomioka, Sh. Tsuda, T. Yamaguchi, and Y. Takano Appl. Phys. Lett. 93, 152505 (2008).
  11. S. Medvedev, T. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V Ksenofontov, G. Wortmann, and C. Felser, Nature Mater. 8, 630 (2009).
  12. Y. Mizuguchi and Y. Tokano, J. Phys. Soc. Jpn. 79, 102001 (2010).
  13. A. Martinelli, A. Palenzona, M. Tropeano, M. Putti, M. R. Cimberle, T. D. Nguyen, M. Affronte, and C. Ritter, Phys. Rev. B 81, 094115 (2010).
  14. M. D. Lumsden, A. D. Christianson, J. Phys.: Condens. Matter. 22, 203203 (2010).
  15. C.-C. Lee, W.-G. Yin, and W. Ku, Phys. Rev. Lett. 103, 267001 (2009).
  16. F. Krüger, S. Kumar, J. Zaanen, and J. van den Brink, Phys. Rev. B 79, 054504 (2009).
  17. W. Schuster, H. Mkiler, and K. Komarek, Monat. für Chem. 110, 1153 (1979).
  18. M. H. Fang, H. M. Pham, B. Qian, T. J. Liu, E. K. Vehstedt, Y. Liu, L. Spinu, and Z. Q. Mao, Phys. Rev. B 78, 224503 (2008).
  19. K. W. Yeh, T. W. Huang, Y. L. Huang, T. K. Chen, F. C. Hsu, P. M. Wu, Y. C. Lee, Y. Y. Chu, C. L. Chen, J. Y. Luo, D. C. Yan, M. K. Wu, Europhys. Lett. 84, 37 002 (2008).
  20. W. Bao, Y. Qiu, Q. Huang, M. A. Green, P. Zajdel, M. R. Fitzsimmons, M. Zhernenkov, M. Fang, B. Qian, E. K. Vehstedt, J. Yang, H. M. Pham, L. Spinu, Z. Q. Mao, Phys. Rev. Lett. 102, 247001 (2009).
  21. S. Li, C. de la Cruz, Q. Huang, Y. Chen, J. W. Lynn, J. Hu, Yi-Lin Huang, F.-C. Hsu, K.-W.
  22. Yeh, M.-K. Wu, and P. Dai Phys. Rev. B 79, 057503 (2009).
  23. J. P. Perdew and Yue Wang, Phys. Rev. B 45, 13244 (1992).
  24. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, Z. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008).
  25. T.-L. Xia, D. Hou, S. C. Zhao, A. M. Zhang, G. F. Chen, J. L. Luo, N. L. Wang, J. H. Wei, Z.-Y. Lu, and Q. M. Zhang, Phys. Rev. B 79, 140510 (2009).
  26. P. Kumar, A. Kumar, S. Saha, D. Muthu, J. Prakash, S. Patnaik, U. Waghmare, A. Ganguli, and A. Sood, Solid State Commun. 150, 557 (2010).
  27. K. Okazaki, S. Sugai, S. Niitaka, H. Takagi, arXiv:1010.2374.
  28. T. Yildirim, Physica C, 469, 425 (2009).
  29. M. J. Han and S.Y. Savrasov, Phys. Rev. Lett. 103, 067001 (2009).
  30. W. Baltensperger and J. S. Helman, Helv. Phys. Acta 41, 668 (1968);
  31. W. Baltensperger, J. Appl. Phys. 41, 1052 (1970).
  32. D. J. Lockwood and M. G. Cottam, in: Magnetic Excitations and Fluctuations II, U.
  33. Balucani, S. W. Lovesey, M. G. Rasetti, and V. Tognetti (eds.) Springer, Berlin, (1987), p. 186.
  34. D. J. Lockwood and M. G. Cottam, J. Appl. Phys. 64, 5876 (1988).
  35. C.-Y. Moon and H. J. Choi, Phys. Rev. Lett. 104, 057003 (2010).
  36. K. Horigane, H. Hiraka, and K. Ohoyama, J. Phys. Soc. Jpn. 78, 074718 (2009).
  37. P. G. Radaelli, and S.-W.Cheong, Phys. Rev. B. 66, 094408 (2002).
  38. E. S. Zhitlukhina, K. V. Lamonova, S. O. Orel, P. Lemmens, and Yu. G. Pashkevich, J. Phys.: Condens. Matter 119, 156216 (2007).
  39. O. V. Gornostaeva, V. M. Shatalov, and Yu. G. Pashkevich, JETP Letters, 89, 167 (2009).
  40. S.-H. Lee, Guangyong Xu, W. Ku, J. S. Wen, C. C. Lee, N. Katayama, Z. J. Xu, S. Ji, Z.
  41. W. Lin, G. D. Gu, H.-B. Yang, P. D. Johnson, Z.-H. Pan, T. Valla, M. Fujita, T. J. Sato, S. Chang, K. Yamada, and J. M. Tranquada, Phys. Rev. B 81, 220502 (2010).
  42. M. Granath, J. Bielecki, J. Holmlund, and L. Börjesson, Phys. Rev. B 79, 235103 (2009).
  43. K.-Y. Choi, D. Wulferding, P. Lemmens, S. L. Bud'ko, and P. C. Canfield, Phys. Rev. B 78, 212503 (2008); and K.-Y. Choi, P. Lemmens, I. Eremin, G. Zwicknagl, H. Berger, G. L. Sun, D. L. Sun, and C. T. Lin, J. Phys.: Condens. Matter 22, 115802 (2010).
  44. M. Rahlenbeck, G. L. Sun, D. L. Sun, C. T. Lin, B. Keimer, and C. Ulrich, Phys. Rev. B 80, 064509 (2009).